1. Structure
  2. Tables
  3. Tutorials
  4. Basics
  5. Running Locally
  • Home
  • What is TileDB?
  • Get Started
  • Explore Content
  • Accounts
    • Individual Accounts
      • Apply for the Free Tier
      • Profile
        • Overview
        • Cloud Credentials
        • Storage Paths
        • REST API Tokens
        • Credits
    • Organization Admins
      • Create an Organization
      • Profile
        • Overview
        • Members
        • Cloud Credentials
        • Storage Paths
        • Billing
      • API Tokens
    • Organization Members
      • Organization Invitations
      • Profile
        • Overview
        • Members
        • Cloud Credentials
        • Storage Paths
        • Billing
      • API Tokens
  • Catalog
    • Introduction
    • Data
      • Arrays
      • Tables
      • Single-Cell (SOMA)
      • Genomics (VCF)
      • Biomedical Imaging
      • Vector Search
      • Files
    • Code
      • Notebooks
      • Dashboards
      • User-Defined Functions
      • Task Graphs
      • ML Models
    • Groups
    • Marketplace
    • Search
  • Collaborate
    • Introduction
    • Organizations
    • Access Control
      • Introduction
      • Share Assets
      • Asset Permissions
      • Public Assets
    • Logging
    • Marketplace
  • Analyze
    • Introduction
    • Slice Data
    • Multi-Region Redirection
    • Notebooks
      • Launch a Notebook
      • Usage
      • Widgets
      • Notebook Image Dependencies
    • Dashboards
      • Dashboards
      • Streamlit
    • Preview
    • User-Defined Functions
    • Task Graphs
    • Serverless SQL
    • Monitor
      • Task Log
      • Task Graph Log
  • Scale
    • Introduction
    • Task Graphs
    • API Usage
  • Structure
    • Why Structure Is Important
    • Arrays
      • Introduction
      • Quickstart
      • Foundation
        • Array Data Model
        • Key Concepts
          • Storage
            • Arrays
            • Dimensions
            • Attributes
            • Cells
            • Domain
            • Tiles
            • Data Layout
            • Compression
            • Encryption
            • Tile Filters
            • Array Schema
            • Schema Evolution
            • Fragments
            • Fragment Metadata
            • Commits
            • Indexing
            • Array Metadata
            • Datetimes
            • Groups
            • Object Stores
          • Compute
            • Writes
            • Deletions
            • Consolidation
            • Vacuuming
            • Time Traveling
            • Reads
            • Query Conditions
            • Aggregates
            • User-Defined Functions
            • Distributed Compute
            • Concurrency
            • Parallelism
        • Storage Format Spec
      • Tutorials
        • Basics
          • Basic Dense Array
          • Basic Sparse Array
          • Array Metadata
          • Compression
          • Encryption
          • Data Layout
          • Tile Filters
          • Datetimes
          • Multiple Attributes
          • Variable-Length Attributes
          • String Dimensions
          • Nullable Attributes
          • Multi-Range Reads
          • Query Conditions
          • Aggregates
          • Deletions
          • Catching Errors
          • Configuration
          • Basic S3 Example
          • Basic TileDB Cloud
          • fromDataFrame
          • Palmer Penguins
        • Advanced
          • Schema Evolution
          • Advanced Writes
            • Write at a Timestamp
            • Get Fragment Info
            • Consolidation
              • Fragments
              • Fragment List
              • Consolidation Plan
              • Commits
              • Fragment Metadata
              • Array Metadata
            • Vacuuming
              • Fragments
              • Commits
              • Fragment Metadata
              • Array Metadata
          • Advanced Reads
            • Get Fragment Info
            • Time Traveling
              • Introduction
              • Fragments
              • Array Metadata
              • Schema Evolution
          • Array Upgrade
          • Backends
            • Amazon S3
            • Azure Blob Storage
            • Google Cloud Storage
            • MinIO
            • Lustre
          • Virtual Filesystem
          • User-Defined Functions
          • Distributed Compute
          • Result Estimation
          • Incomplete Queries
        • Management
          • Array Schema
          • Groups
          • Object Management
        • Performance
          • Summary of Factors
          • Dense vs. Sparse
          • Dimensions vs. Attributes
          • Compression
          • Tiling and Data Layout
          • Tuning Writes
          • Tuning Reads
      • API Reference
    • Tables
      • Introduction
      • Quickstart
      • Foundation
        • Data Model
        • Key Concepts
          • Indexes
          • Columnar Storage
          • Compression
          • Data Manipulation
          • Optimize Tables
          • ACID
          • Serverless SQL
          • SQL Connectors
          • Dataframes
          • CSV Ingestion
      • Tutorials
        • Basics
          • Ingestion with SQL
          • CSV Ingestion
          • Basic S3 Example
          • Running Locally
        • Advanced
          • Scalable Ingestion
          • Scalable Queries
      • API Reference
    • AI & ML
      • Vector Search
        • Introduction
        • Quickstart
        • Foundation
          • Data Model
          • Key Concepts
            • Vector Search
            • Vector Databases
            • Algorithms
            • Distance Metrics
            • Updates
            • Deployment Methods
            • Architecture
            • Distributed Compute
          • Storage Format Spec
        • Tutorials
          • Basics
            • Ingestion & Querying
            • Updates
            • Deletions
            • Basic S3 Example
            • Running Locally
          • Advanced
            • Versioning
            • Time Traveling
            • Consolidation
            • Distributed Compute
            • RAG LLM
            • LLM Memory
            • File Search
            • Image Search
            • Protein Search
          • Performance
        • API Reference
      • ML Models
        • Introduction
        • Quickstart
        • Foundation
          • Basics
          • Storage
          • Cloud Execution
          • Why TileDB for Machine Learning
        • Tutorials
          • Ingestion
            • Data Ingestion
              • Dense Datasets
              • Sparse Datasets
            • ML Model Ingestion
          • Management
            • Array Schema
            • Machine Learning: Groups
            • Time Traveling
    • Life Sciences
      • Single-cell
        • Introduction
        • Quickstart
        • Foundation
          • Data Model
          • Key Concepts
            • Data Structures
            • Use of Apache Arrow
            • Join IDs
            • State Management
            • TileDB Cloud URIs
          • SOMA API Specification
        • Tutorials
          • Data Ingestion
          • Bulk Ingestion Tutorial
          • Data Access
          • Distributed Compute
          • Basic S3 Example
          • Multi-Experiment Queries
          • Appending Data to a SOMA Experiment
          • Add New Measurements
          • SQL Queries
          • Running Locally
          • Shapes in TileDB-SOMA
          • Drug Discovery App
        • Spatial
          • Introduction
          • Foundation
            • Spatial Data Model
            • Data Structures
          • Tutorials
            • Spatial Data Ingestion
            • Access Spatial Data
            • Manage Coordinate Spaces
        • API Reference
      • Population Genomics
        • Introduction
        • Quickstart
        • Foundation
          • Data Model
          • Key Concepts
            • The N+1 Problem
            • Architecture
            • Arrays
            • Ingestion
            • Reads
            • Variant Statistics
            • Annotations
            • User-Defined Functions
            • Tables and SQL
            • Distributed Compute
          • Storage Format Spec
        • Tutorials
          • Basics
            • Basic Ingestion
            • Basic Queries
            • Export to VCF
            • Add New Samples
            • Deleting Samples
            • Basic S3 Example
            • Basic TileDB Cloud
          • Advanced
            • Scalable Ingestion
            • Scalable Queries
            • Query Transforms
            • Handling Large Queries
            • Annotations
              • Finding Annotations
              • Embedded Annotations
              • External Annotations
              • Annotation VCFs
              • Ingesting Annotations
            • Variant Statistics
            • Tables and SQL
            • User-Defined Functions
            • Sample Metadata
            • Split VCF
          • Performance
        • API Reference
          • Command Line Interface
          • Python API
          • Cloud API
      • Biomedical Imaging
        • Introduction
        • Foundation
          • Data Model
          • Key Concepts
            • Arrays
            • Ingestion
            • Reads
            • User Defined Functions
          • Storage Format Spec
        • Quickstart
        • Tutorials
          • Basics
            • Ingestion
            • Read
              • OpenSlide
              • TileDB-Py
          • Advanced
            • Batched Ingestion
            • Chunked Ingestion
            • Machine Learning
              • PyTorch
            • Napari
    • Files
  • API Reference
  • Self-Hosting
    • Installation
    • Upgrades
    • Administrative Tasks
    • Image Customization
      • Customize User-Defined Function Images
      • AWS ECR Container Registry
      • Customize Jupyter Notebook Images
    • Single Sign-On
      • Configure Single Sign-On
      • OpenID Connect
      • Okta SCIM
      • Microsoft Entra
  • Glossary

On this page

  • Installation
  • Local storage
  • Storage on S3
  • Storage on TileDB Cloud
  1. Structure
  2. Tables
  3. Tutorials
  4. Basics
  5. Running Locally

Run TileDB-Tables Locally

tutorials
tables
local access
This tutorial shows how to use TileDB’s tabular offering on your own machine.

This tutorial explains how to install TileDB and its SQL package (via MariaDB), as well as how to use it on TileDB Cloud.

Note

TileDB’s SQL query support is now provided by TileDB Tables. The TileDB storage engine for MariaDB, imported as tiledb.sql, and also known as MyTile or TileDB-MariaDB, is now deprecated.

Installation

You need to install the following libraries and programs:

  • TileDB-MariaDB, which offers a SQL API to TileDB.
  • TileDB-Py, the Python wrapper of TileDB Embedded.
  • NumPy, to handle data with Python.
  • pandas, to create and manipulate DataFrames.
  • Apache Arrow, to boost performance via zero-copy to pandas.

Conda and mamba are the preferred mechanisms for installing TileDB-VCF.

# enter the following two lines if you are on a M1 Mac
CONDA_SUBDIR=os
conda config --env --set subdir osx-64

# create the conda environment
conda create -n tiledb-tables "python<3.10"
conda activate tiledb-tables

# mamba is a faster and more reliable alternative to conda
conda install -c conda-forge mamba

# Install the required libraries
mamba install -y -c conda-forge -c tiledb tiledb-py libtiledb-sql-py pandas pyarrow numpy

# Install the TileDB Cloud Python client
pip install tiledb-cloud

Local storage

Using TileDB’s tabular offering on local storage is similar to the Tables Quickstart tutorial, as well as the other Tables tutorials.

Storage on S3

Using TileDB’s tabular offering to interact with Amazon S3 from your local storage is similar to the Basic S3 Example with Tables tutorial.

Storage on TileDB Cloud

Take note of the following when interacting with TileDB Cloud outside of the notebook environments in the TileDB Cloud service:

  1. You need to create a REST API token from the TileDB Cloud console.
  2. You need to set the REST API token in an environment variable and login using the token value.
  3. When creating a new table, you need to use a URI in the form tiledb://<your_username>/<S3_path>/<table_name>, where S3_path is the location on S3 where you wish to physically store the table.
  4. When referring to the table after creating it (for example, when submitting queries), use a URI in the form tiledb://<your_username>/<table_name> (that is, no need to specify the S3 physical path anymore).

Start by importing the necessary libraries, loading the appropriate token and username, logging in, setting up the URIs and cleaning up any already-created table with the same name.

import warnings

import tiledb
import tiledb.cloud

warnings.filterwarnings("ignore")
import os.path

import pandas as pd
import tiledb.sql

# You should set the appropriate environment variables with
# your TileDB Cloud token and username.
token = os.environ["TILEDB_REST_TOKEN"]
username = os.environ["TILEDB_REST_USERNAME"]

# Get the bucket from an environment variable
s3_bucket = os.environ["S3_BUCKET"]

# Login to TileDB Cloud
tiledb.cloud.login(token=token)

# Set URIs
table_name = "my_table"
table_uri = "tiledb://" + username + "/" + table_name
table_reg_uri = "tiledb://" + username + "/" + s3_bucket + "/" + table_name
csv_uri = (
    "s3://tiledb-inc-demo-data/examples/notebooks/nyc_yellow_tripdata/taxi_first_10.csv"
)

# Define config values and context
cfg = {"vfs.s3.no_sign_request": "true", "vfs.s3.region": "us-east-1"}
ctx = tiledb.cloud.Ctx(cfg)

# Clean up past data
if tiledb.array_exists(table_uri):
    tiledb.Array.delete_array(table_uri)

Ingest some data, using the URI that incorporates the S3 physical path as explained earlier:

tiledb.from_csv(
    table_reg_uri,
    csv_uri,
    ctx=ctx,
    parse_dates=["tpep_dropoff_datetime", "tpep_pickup_datetime"],
)

Run a SQL query to see that it works, but now you can use the TileDB URI that doesn’t incorporate the S3 physical path.

# Query with SQL
db = tiledb.sql.connect(init_command="SET GLOBAL time_zone='+00:00'")
pd.read_sql(sql=f"SELECT * FROM `{table_uri}`", con=db)
__tiledb_rows congestion_surcharge improvement_surcharge tip_amount total_amount mta_tax extra tpep_dropoff_datetime fare_amount payment_type PULocationID store_and_fwd_flag tpep_pickup_datetime VendorID trip_distance RatecodeID tolls_amount passenger_count DOLocationID
0 0 2.5 0.3 1.47 11.27 0.5 3.0 2019-12-31 19:33:03 6.00 1 238 N 2019-12-31 19:28:15 1 1.20 1 0 1 239
1 1 2.5 0.3 1.50 12.30 0.5 3.0 2019-12-31 19:43:04 7.00 1 239 N 2019-12-31 19:35:39 1 1.20 1 0 1 238
2 2 2.5 0.3 1.00 10.80 0.5 3.0 2019-12-31 19:53:52 6.00 1 238 N 2019-12-31 19:47:41 1 0.60 1 0 1 238
3 3 0.0 0.3 1.36 8.16 0.5 0.5 2019-12-31 20:00:14 5.50 1 238 N 2019-12-31 19:55:23 1 0.80 1 0 1 151
4 4 0.0 0.3 0.00 4.80 0.5 0.5 2019-12-31 19:04:16 3.50 2 193 N 2019-12-31 19:01:58 2 0.00 1 0 1 193
5 5 0.0 0.3 0.00 3.80 0.5 0.5 2019-12-31 19:10:37 2.50 2 7 N 2019-12-31 19:09:44 2 0.03 1 0 1 193
6 6 0.0 0.3 0.01 3.81 0.5 0.5 2019-12-31 19:39:29 2.50 1 193 N 2019-12-31 19:39:25 2 0.00 1 0 1 193
7 7 2.5 0.3 0.00 2.81 0.0 0.0 2019-12-18 10:28:59 0.01 1 193 N 2019-12-18 10:27:49 2 0.00 5 0 1 193
8 8 2.5 0.3 0.00 6.30 0.5 0.5 2019-12-18 10:31:35 2.50 1 193 N 2019-12-18 10:30:35 2 0.00 1 0 4 193
9 9 2.5 0.3 2.35 14.15 0.5 3.0 2019-12-31 19:40:28 8.00 1 246 N 2019-12-31 19:29:01 1 0.70 1 0 2 48

Clean up.

# Clean up
if tiledb.array_exists(table_uri):
    tiledb.Array.delete_array(table_uri)
Basic S3 Example
Advanced