1. Structure
  2. Arrays
  3. Tutorials
  4. Management
  5. Object Management
  • Home
  • What is TileDB?
  • Get Started
  • Explore Content
  • Accounts
    • Individual Accounts
      • Apply for the Free Tier
      • Profile
        • Overview
        • Cloud Credentials
        • Storage Paths
        • REST API Tokens
        • Credits
    • Organization Admins
      • Create an Organization
      • Profile
        • Overview
        • Members
        • Cloud Credentials
        • Storage Paths
        • Billing
      • API Tokens
    • Organization Members
      • Organization Invitations
      • Profile
        • Overview
        • Members
        • Cloud Credentials
        • Storage Paths
        • Billing
      • API Tokens
  • Catalog
    • Introduction
    • Data
      • Arrays
      • Tables
      • Single-Cell (SOMA)
      • Genomics (VCF)
      • Biomedical Imaging
      • Vector Search
      • Files
    • Code
      • Notebooks
      • Dashboards
      • User-Defined Functions
      • Task Graphs
      • ML Models
    • Groups
    • Marketplace
    • Search
  • Collaborate
    • Introduction
    • Organizations
    • Access Control
      • Introduction
      • Share Assets
      • Asset Permissions
      • Public Assets
    • Logging
    • Marketplace
  • Analyze
    • Introduction
    • Slice Data
    • Multi-Region Redirection
    • Notebooks
      • Launch a Notebook
      • Usage
      • Widgets
      • Notebook Image Dependencies
    • Dashboards
      • Dashboards
      • Streamlit
    • Preview
    • User-Defined Functions
    • Task Graphs
    • Serverless SQL
    • Monitor
      • Task Log
      • Task Graph Log
  • Scale
    • Introduction
    • Task Graphs
    • API Usage
  • Structure
    • Why Structure Is Important
    • Arrays
      • Introduction
      • Quickstart
      • Foundation
        • Array Data Model
        • Key Concepts
          • Storage
            • Arrays
            • Dimensions
            • Attributes
            • Cells
            • Domain
            • Tiles
            • Data Layout
            • Compression
            • Encryption
            • Tile Filters
            • Array Schema
            • Schema Evolution
            • Fragments
            • Fragment Metadata
            • Commits
            • Indexing
            • Array Metadata
            • Datetimes
            • Groups
            • Object Stores
          • Compute
            • Writes
            • Deletions
            • Consolidation
            • Vacuuming
            • Time Traveling
            • Reads
            • Query Conditions
            • Aggregates
            • User-Defined Functions
            • Distributed Compute
            • Concurrency
            • Parallelism
        • Storage Format Spec
      • Tutorials
        • Basics
          • Basic Dense Array
          • Basic Sparse Array
          • Array Metadata
          • Compression
          • Encryption
          • Data Layout
          • Tile Filters
          • Datetimes
          • Multiple Attributes
          • Variable-Length Attributes
          • String Dimensions
          • Nullable Attributes
          • Multi-Range Reads
          • Query Conditions
          • Aggregates
          • Deletions
          • Catching Errors
          • Configuration
          • Basic S3 Example
          • Basic TileDB Cloud
          • fromDataFrame
          • Palmer Penguins
        • Advanced
          • Schema Evolution
          • Advanced Writes
            • Write at a Timestamp
            • Get Fragment Info
            • Consolidation
              • Fragments
              • Fragment List
              • Consolidation Plan
              • Commits
              • Fragment Metadata
              • Array Metadata
            • Vacuuming
              • Fragments
              • Commits
              • Fragment Metadata
              • Array Metadata
          • Advanced Reads
            • Get Fragment Info
            • Time Traveling
              • Introduction
              • Fragments
              • Array Metadata
              • Schema Evolution
          • Array Upgrade
          • Backends
            • Amazon S3
            • Azure Blob Storage
            • Google Cloud Storage
            • MinIO
            • Lustre
          • Virtual Filesystem
          • User-Defined Functions
          • Distributed Compute
          • Result Estimation
          • Incomplete Queries
        • Management
          • Array Schema
          • Groups
          • Object Management
        • Performance
          • Summary of Factors
          • Dense vs. Sparse
          • Dimensions vs. Attributes
          • Compression
          • Tiling and Data Layout
          • Tuning Writes
          • Tuning Reads
      • API Reference
    • Tables
      • Introduction
      • Quickstart
      • Foundation
        • Data Model
        • Key Concepts
          • Indexes
          • Columnar Storage
          • Compression
          • Data Manipulation
          • Optimize Tables
          • ACID
          • Serverless SQL
          • SQL Connectors
          • Dataframes
          • CSV Ingestion
      • Tutorials
        • Basics
          • Ingestion with SQL
          • CSV Ingestion
          • Basic S3 Example
          • Running Locally
        • Advanced
          • Scalable Ingestion
          • Scalable Queries
      • API Reference
    • AI & ML
      • Vector Search
        • Introduction
        • Quickstart
        • Foundation
          • Data Model
          • Key Concepts
            • Vector Search
            • Vector Databases
            • Algorithms
            • Distance Metrics
            • Updates
            • Deployment Methods
            • Architecture
            • Distributed Compute
          • Storage Format Spec
        • Tutorials
          • Basics
            • Ingestion & Querying
            • Updates
            • Deletions
            • Basic S3 Example
            • Running Locally
          • Advanced
            • Versioning
            • Time Traveling
            • Consolidation
            • Distributed Compute
            • RAG LLM
            • LLM Memory
            • File Search
            • Image Search
            • Protein Search
          • Performance
        • API Reference
      • ML Models
        • Introduction
        • Quickstart
        • Foundation
          • Basics
          • Storage
          • Cloud Execution
          • Why TileDB for Machine Learning
        • Tutorials
          • Ingestion
            • Data Ingestion
              • Dense Datasets
              • Sparse Datasets
            • ML Model Ingestion
          • Management
            • Array Schema
            • Machine Learning: Groups
            • Time Traveling
    • Life Sciences
      • Single-cell
        • Introduction
        • Quickstart
        • Foundation
          • Data Model
          • Key Concepts
            • Data Structures
            • Use of Apache Arrow
            • Join IDs
            • State Management
            • TileDB Cloud URIs
          • SOMA API Specification
        • Tutorials
          • Data Ingestion
          • Bulk Ingestion Tutorial
          • Data Access
          • Distributed Compute
          • Basic S3 Example
          • Multi-Experiment Queries
          • Appending Data to a SOMA Experiment
          • Add New Measurements
          • SQL Queries
          • Running Locally
          • Shapes in TileDB-SOMA
          • Drug Discovery App
        • Spatial
          • Introduction
          • Foundation
            • Spatial Data Model
            • Data Structures
          • Tutorials
            • Spatial Data Ingestion
            • Access Spatial Data
            • Manage Coordinate Spaces
        • API Reference
      • Population Genomics
        • Introduction
        • Quickstart
        • Foundation
          • Data Model
          • Key Concepts
            • The N+1 Problem
            • Architecture
            • Arrays
            • Ingestion
            • Reads
            • Variant Statistics
            • Annotations
            • User-Defined Functions
            • Tables and SQL
            • Distributed Compute
          • Storage Format Spec
        • Tutorials
          • Basics
            • Basic Ingestion
            • Basic Queries
            • Export to VCF
            • Add New Samples
            • Deleting Samples
            • Basic S3 Example
            • Basic TileDB Cloud
          • Advanced
            • Scalable Ingestion
            • Scalable Queries
            • Query Transforms
            • Handling Large Queries
            • Annotations
              • Finding Annotations
              • Embedded Annotations
              • External Annotations
              • Annotation VCFs
              • Ingesting Annotations
            • Variant Statistics
            • Tables and SQL
            • User-Defined Functions
            • Sample Metadata
            • Split VCF
          • Performance
        • API Reference
          • Command Line Interface
          • Python API
          • Cloud API
      • Biomedical Imaging
        • Introduction
        • Foundation
          • Data Model
          • Key Concepts
            • Arrays
            • Ingestion
            • Reads
            • User Defined Functions
          • Storage Format Spec
        • Quickstart
        • Tutorials
          • Basics
            • Ingestion
            • Read
              • OpenSlide
              • TileDB-Py
          • Advanced
            • Batched Ingestion
            • Chunked Ingestion
            • Machine Learning
              • PyTorch
            • Napari
    • Files
  • API Reference
  • Self-Hosting
    • Installation
    • Upgrades
    • Administrative Tasks
    • Image Customization
      • Customize User-Defined Function Images
      • AWS ECR Container Registry
      • Customize Jupyter Notebook Images
    • Single Sign-On
      • Configure Single Sign-On
      • OpenID Connect
      • Okta SCIM
      • Microsoft Entra
  • Glossary
  1. Structure
  2. Arrays
  3. Tutorials
  4. Management
  5. Object Management

Object Management

arrays
tutorials
python
r
Learn how to manage your array and group objects, including adding, modifying, and removing objects.
How to run this tutorial

You can run this tutorial in two ways:

  1. Locally on your machine.
  2. On TileDB Cloud.

However, since TileDB Cloud has a free tier, we strongly recommend that you sign up and run everything there, as that requires no installations or deployment.

This tutorial explains functionality around managing TileDB objects, mainly groups and arrays.

First, import the necessary libraries, set group and array URIs (that is, their paths, which in this tutorial will be on local storage), and delete any previously created groups and arrays with the same name.

  • Python
  • R
# Import necessary libraries
import os.path
import shutil

import numpy as np
import tiledb

# Set array URIs and names
array_uri = os.path.expanduser("~/object_mgmt_array")
array_name = "my_array"
new_array_uri = "my_array_new"

# Set group paths and names
grp_root_uri = os.path.expanduser("~/object_mgmt_grp_root")
grp1_uri = os.path.expanduser("~/object_mgmt_grp1")
grp2_uri = os.path.expanduser("~/object_mgmt_grp2")
grp3_uri = os.path.expanduser("~/object_mgmt_grp3")
grp1_name = "grp1"
grp2_name = "grp2"
grp3_name = "grp3"

# Delete all paths if they already exist
if os.path.exists(array_uri):
    shutil.rmtree(array_uri)
if os.path.exists(grp_root_uri):
    shutil.rmtree(grp_root_uri)
if os.path.exists(grp1_uri):
    shutil.rmtree(grp1_uri)
if os.path.exists(grp2_uri):
    shutil.rmtree(grp2_uri)
if os.path.exists(grp3_uri):
    shutil.rmtree(grp3_uri)
# Import necessary libraries
library(tiledb)

# Set array URIs and name
array_uri <- path.expand("~/object_mgmt_array_r")
array_name <- "my_array"
new_array_uri <- "my_array_new"

# Set group paths and names
grp_root_uri <- path.expand("~/object_mgmt_grp_root_r")
grp1_uri <- path.expand("~/object_mgmt_grp1_r")
grp2_uri <- path.expand("~/object_mgmt_grp2_r")
grp3_uri <- path.expand("~/object_mgmt_grp3_r")
grp1_name <- "grp1"
grp2_name <- "grp2"
grp3_name <- "grp3"

# Delete array if it already exists
if (file.exists(array_uri)) {
  unlink(array_uri, recursive = TRUE)
}
if (file.exists(grp_root_uri)) {
  unlink(grp_root_uri, recursive = TRUE)
}
if (file.exists(grp1_uri)) {
  unlink(grp1_uri, recursive = TRUE)
}
if (file.exists(grp2_uri)) {
  unlink(grp2_uri, recursive = TRUE)
}
if (file.exists(grp3_uri)) {
  unlink(grp3_uri, recursive = TRUE)
}

Next, create an array. In this example, the array is dense, but the functionality in this example applies to any array.

  • Python
  • R
# Create the two dimensions
d1 = tiledb.Dim(name="d1", domain=(1, 4), tile=2, dtype=np.int32)
d2 = tiledb.Dim(name="d2", domain=(1, 4), tile=2, dtype=np.int32)

# Create a domain using the two dimensions
dom = tiledb.Domain(d1, d2)
# Order of the dimensions matters when slicing subarrays.
# Remember to give priority to more selective dimensions to
# maximize the pruning power during slicing.

# Create an attribute
a = tiledb.Attr(name="a", dtype=np.int32)

# Create the array schema, setting `sparse=False` to indicate a dense array
sch = tiledb.ArraySchema(domain=dom, sparse=False, attrs=[a])

# Create the array on disk (it will initially be empty)
tiledb.Array.create(array_uri, sch)
# Create the two dimensions
d1 <- tiledb_dim("d1", c(1L, 4L), 2L, "INT32")
d2 <- tiledb_dim("d2", c(1L, 4L), 2L, "INT32")

# Create a domain using the two dimensions
dom <- tiledb_domain(dims = c(d1, d2))

# Create an attribute
a <- tiledb_attr("a", type = "INT32")

# Create the array schema, setting `sparse = FALSE` to indicate a dense array
sch <- tiledb_array_schema(dom, a, sparse = FALSE)

# Create the array on disk (it will initially be empty)
arr <- tiledb_array_create(array_uri, sch)

Create an object hierarchy, which sets the foundation for the rest of the examples.

  • Python
  • R
# Create groups
tiledb.Group.create(grp_root_uri)
tiledb.Group.create(grp1_uri)
tiledb.Group.create(grp2_uri)
tiledb.Group.create(grp3_uri)

# Create hierarchy
with tiledb.Group(grp_root_uri, "w") as grp_root:
    grp_root.add(grp1_uri, grp1_name)
    grp_root.add(grp2_uri, grp2_name)
    with tiledb.Group(grp1_uri, "w") as grp1:
        grp1.add(array_uri, array_name)
        grp1.add(grp3_uri, grp3_name)

# The group hierarchy looks as follows
with tiledb.Group(grp_root_uri, "r") as grp_root:
    print(grp_root)
object_mgmt_grp_root GROUP
|-- grp1 GROUP
|------ my_array ARRAY
|------ grp3 GROUP
|-- grp2 GROUP
# Create groups
tiledb_group_create(grp_root_uri)
tiledb_group_create(grp1_uri)
tiledb_group_create(grp2_uri)
tiledb_group_create(grp3_uri)

# Create hierarchy
grp_root <- tiledb_group(grp_root_uri, "WRITE")
tiledb_group_add_member(grp_root, grp1_uri, FALSE, grp1_name)
tiledb_group_add_member(grp_root, grp2_uri, FALSE, grp2_name)
grp_root <- tiledb_group_close(grp_root)

grp1 <- tiledb_group(grp1_uri, "WRITE")
tiledb_group_add_member(grp1, array_uri, FALSE, array_name)
tiledb_group_add_member(grp1, grp3_uri, FALSE, grp3_name)
grp1 <- tiledb_group_close(grp1)

grp_root <- tiledb_group_open(grp_root, "READ")
writeLines(tiledb_group_member_dump(grp_root, recursive = TRUE))
object_mgmt_grp_root_r GROUP
|-- grp1 GROUP
|------ my_array ARRAY
|------ grp3 GROUP
|-- grp2 GROUP

You can check the object type as follows.

  • Python
  • R
print(tiledb.object_type("invalid_path"))  # returns None
print(tiledb.object_type(grp1_uri))  # returns "group"
print(tiledb.object_type(array_uri))  # returns "array"
None
group
array
print(tiledb_object_type("invalid_path")) # "INVALID"
print(tiledb_object_type(grp1_uri)) # "GROUP"
print(tiledb_object_type(array_uri)) # "ARRAY"
[1] "INVALID"
[1] "GROUP"
[1] "ARRAY"

You can move or rename an object:

  • Python
  • R
# Rename array
tiledb.move(array_uri, new_array_uri)
print(tiledb.array_exists(array_uri))  # False
print(tiledb.array_exists(new_array_uri))  # True

# Rename array to original
tiledb.move(new_array_uri, array_uri)
print(tiledb.array_exists(array_uri))  # True
print(tiledb.array_exists(new_array_uri))  # False
False
True
True
False
# Rename array
invisible(tiledb_object_mv(array_uri, new_array_uri))
print(tiledb_object_type(array_uri) == "ARRAY") # FALSE
print(tiledb_object_type(new_array_uri) == "ARRAY") # TRUE

# Rename array to original
invisible(tiledb_object_mv(new_array_uri, array_uri))
print(tiledb_object_type(array_uri) == "ARRAY") # TRUE
print(tiledb_object_type(new_array_uri) == "ARRAY") # FALSE
[1] FALSE
[1] TRUE
[1] TRUE
[1] FALSE

You can also remove an object.

  • Python
  • R
tiledb.remove(grp1_uri)
invisible(tiledb_object_rm(grp1_uri))

Removing a subgroup from the root group should produce the following hierarchy:

  • Python
  • R
# The group hierarchy looks as follows
# NOTE: Removing the physical path of an object does not
# automatically remove it from the group members
with tiledb.Group(grp_root_uri, "r") as grp_root:
    print(grp_root)
object_mgmt_grp_root GROUP
|-- grp1 GROUP (does not exist)
|-- grp2 GROUP
# The group hierarchy looks as follows
# NOTE: Removing the physical path of an object does not
# automatically remove it from the group members
writeLines(tiledb_group_member_dump(grp_root, recursive = TRUE))
object_mgmt_grp_root_r GROUP
|-- grp1 GROUP (does not exist)
|-- grp2 GROUP
Warning

Deleting the physical storage path of an object doesn’t automatically delete any member created for this storage path in another group.

To mitigate this issue, you need to manually remove the corresponding member from the group.

  • Python
  • R
# Manually remove the deleted member from the group
with tiledb.Group(grp_root_uri, "w") as grp_root:
    grp_root.remove(grp1_name)
# Manually remove the deleted member from the group
grp_root <- tiledb_group_close(grp_root)
grp_root <- tiledb_group_open(grp_root, "WRITE")
tiledb_group_remove_member(grp_root, grp1_uri)
grp_root <- tiledb_group_close(grp_root)

After the preceding operation, the group hierarchy looks clean.

  • Python
  • R
# Now the group contains only valid members
with tiledb.Group(grp_root_uri, "r") as grp_root:
    print(grp_root)
object_mgmt_grp_root GROUP
|-- grp2 GROUP
grp_root <- tiledb_group_open(grp_root, "READ")

# Now the group contains only valid members
writeLines(tiledb_group_member_dump(grp_root, recursive = TRUE))

# Close the group
grp_root <- tiledb_group_close(grp_root)
object_mgmt_grp_root_r GROUP
|-- grp2 GROUP

Always clean up in the end.

  • Python
  • R
# Delete all paths
if os.path.exists(array_uri):
    shutil.rmtree(array_uri)
if os.path.exists(new_array_uri):
    shutil.rmtree(new_array_uri)
if os.path.exists(grp_root_uri):
    shutil.rmtree(grp_root_uri)
if os.path.exists(grp1_uri):
    shutil.rmtree(grp1_uri)
if os.path.exists(grp2_uri):
    shutil.rmtree(grp2_uri)
if os.path.exists(grp3_uri):
    shutil.rmtree(grp3_uri)
if (file.exists(array_uri)) {
  unlink(array_uri, recursive = TRUE)
}
if (file.exists(grp_root_uri)) {
  unlink(grp_root_uri, recursive = TRUE)
}
if (file.exists(grp1_uri)) {
  unlink(grp1_uri, recursive = TRUE)
}
if (file.exists(grp2_uri)) {
  unlink(grp2_uri, recursive = TRUE)
}
if (file.exists(grp3_uri)) {
  unlink(grp3_uri, recursive = TRUE)
}
Groups
Performance