1. Structure
  2. Life Sciences
  3. Population Genomics
  4. Tutorials
  5. Advanced
  6. Scalable Queries
  • Home
  • What is TileDB?
  • Get Started
  • Explore Content
  • Accounts
    • Individual Accounts
      • Apply for the Free Tier
      • Profile
        • Overview
        • Cloud Credentials
        • Storage Paths
        • REST API Tokens
        • Credits
    • Organization Admins
      • Create an Organization
      • Profile
        • Overview
        • Members
        • Cloud Credentials
        • Storage Paths
        • Billing
      • API Tokens
    • Organization Members
      • Organization Invitations
      • Profile
        • Overview
        • Members
        • Cloud Credentials
        • Storage Paths
        • Billing
      • API Tokens
  • Catalog
    • Introduction
    • Data
      • Arrays
      • Tables
      • Single-Cell (SOMA)
      • Genomics (VCF)
      • Biomedical Imaging
      • Vector Search
      • Files
    • Code
      • Notebooks
      • Dashboards
      • User-Defined Functions
      • Task Graphs
      • ML Models
    • Groups
    • Marketplace
    • Search
  • Collaborate
    • Introduction
    • Organizations
    • Access Control
      • Introduction
      • Share Assets
      • Asset Permissions
      • Public Assets
    • Logging
    • Marketplace
  • Analyze
    • Introduction
    • Slice Data
    • Multi-Region Redirection
    • Notebooks
      • Launch a Notebook
      • Usage
      • Widgets
      • Notebook Image Dependencies
    • Dashboards
      • Dashboards
      • Streamlit
    • Preview
    • User-Defined Functions
    • Task Graphs
    • Serverless SQL
    • Monitor
      • Task Log
      • Task Graph Log
  • Scale
    • Introduction
    • Task Graphs
    • API Usage
  • Structure
    • Why Structure Is Important
    • Arrays
      • Introduction
      • Quickstart
      • Foundation
        • Array Data Model
        • Key Concepts
          • Storage
            • Arrays
            • Dimensions
            • Attributes
            • Cells
            • Domain
            • Tiles
            • Data Layout
            • Compression
            • Encryption
            • Tile Filters
            • Array Schema
            • Schema Evolution
            • Fragments
            • Fragment Metadata
            • Commits
            • Indexing
            • Array Metadata
            • Datetimes
            • Groups
            • Object Stores
          • Compute
            • Writes
            • Deletions
            • Consolidation
            • Vacuuming
            • Time Traveling
            • Reads
            • Query Conditions
            • Aggregates
            • User-Defined Functions
            • Distributed Compute
            • Concurrency
            • Parallelism
        • Storage Format Spec
      • Tutorials
        • Basics
          • Basic Dense Array
          • Basic Sparse Array
          • Array Metadata
          • Compression
          • Encryption
          • Data Layout
          • Tile Filters
          • Datetimes
          • Multiple Attributes
          • Variable-Length Attributes
          • String Dimensions
          • Nullable Attributes
          • Multi-Range Reads
          • Query Conditions
          • Aggregates
          • Deletions
          • Catching Errors
          • Configuration
          • Basic S3 Example
          • Basic TileDB Cloud
          • fromDataFrame
          • Palmer Penguins
        • Advanced
          • Schema Evolution
          • Advanced Writes
            • Write at a Timestamp
            • Get Fragment Info
            • Consolidation
              • Fragments
              • Fragment List
              • Consolidation Plan
              • Commits
              • Fragment Metadata
              • Array Metadata
            • Vacuuming
              • Fragments
              • Commits
              • Fragment Metadata
              • Array Metadata
          • Advanced Reads
            • Get Fragment Info
            • Time Traveling
              • Introduction
              • Fragments
              • Array Metadata
              • Schema Evolution
          • Array Upgrade
          • Backends
            • Amazon S3
            • Azure Blob Storage
            • Google Cloud Storage
            • MinIO
            • Lustre
          • Virtual Filesystem
          • User-Defined Functions
          • Distributed Compute
          • Result Estimation
          • Incomplete Queries
        • Management
          • Array Schema
          • Groups
          • Object Management
        • Performance
          • Summary of Factors
          • Dense vs. Sparse
          • Dimensions vs. Attributes
          • Compression
          • Tiling and Data Layout
          • Tuning Writes
          • Tuning Reads
      • API Reference
    • Tables
      • Introduction
      • Quickstart
      • Foundation
        • Data Model
        • Key Concepts
          • Indexes
          • Columnar Storage
          • Compression
          • Data Manipulation
          • Optimize Tables
          • ACID
          • Serverless SQL
          • SQL Connectors
          • Dataframes
          • CSV Ingestion
      • Tutorials
        • Basics
          • Ingestion with SQL
          • CSV Ingestion
          • Basic S3 Example
          • Running Locally
        • Advanced
          • Scalable Ingestion
          • Scalable Queries
      • API Reference
    • AI & ML
      • Vector Search
        • Introduction
        • Quickstart
        • Foundation
          • Data Model
          • Key Concepts
            • Vector Search
            • Vector Databases
            • Algorithms
            • Distance Metrics
            • Updates
            • Deployment Methods
            • Architecture
            • Distributed Compute
          • Storage Format Spec
        • Tutorials
          • Basics
            • Ingestion & Querying
            • Updates
            • Deletions
            • Basic S3 Example
            • Running Locally
          • Advanced
            • Versioning
            • Time Traveling
            • Consolidation
            • Distributed Compute
            • RAG LLM
            • LLM Memory
            • File Search
            • Image Search
            • Protein Search
          • Performance
        • API Reference
      • ML Models
        • Introduction
        • Quickstart
        • Foundation
          • Basics
          • Storage
          • Cloud Execution
          • Why TileDB for Machine Learning
        • Tutorials
          • Ingestion
            • Data Ingestion
              • Dense Datasets
              • Sparse Datasets
            • ML Model Ingestion
          • Management
            • Array Schema
            • Machine Learning: Groups
            • Time Traveling
    • Life Sciences
      • Single-cell
        • Introduction
        • Quickstart
        • Foundation
          • Data Model
          • Key Concepts
            • Data Structures
            • Use of Apache Arrow
            • Join IDs
            • State Management
            • TileDB Cloud URIs
          • SOMA API Specification
        • Tutorials
          • Data Ingestion
          • Bulk Ingestion Tutorial
          • Data Access
          • Distributed Compute
          • Basic S3 Example
          • Multi-Experiment Queries
          • Appending Data to a SOMA Experiment
          • Add New Measurements
          • SQL Queries
          • Running Locally
          • Shapes in TileDB-SOMA
          • Drug Discovery App
        • Spatial
          • Introduction
          • Foundation
            • Spatial Data Model
            • Data Structures
          • Tutorials
            • Spatial Data Ingestion
            • Access Spatial Data
            • Manage Coordinate Spaces
        • API Reference
      • Population Genomics
        • Introduction
        • Quickstart
        • Foundation
          • Data Model
          • Key Concepts
            • The N+1 Problem
            • Architecture
            • Arrays
            • Ingestion
            • Reads
            • Variant Statistics
            • Annotations
            • User-Defined Functions
            • Tables and SQL
            • Distributed Compute
          • Storage Format Spec
        • Tutorials
          • Basics
            • Basic Ingestion
            • Basic Queries
            • Export to VCF
            • Add New Samples
            • Deleting Samples
            • Basic S3 Example
            • Basic TileDB Cloud
          • Advanced
            • Scalable Ingestion
            • Scalable Queries
            • Query Transforms
            • Handling Large Queries
            • Annotations
              • Finding Annotations
              • Embedded Annotations
              • External Annotations
              • Annotation VCFs
              • Ingesting Annotations
            • Variant Statistics
            • Tables and SQL
            • User-Defined Functions
            • Sample Metadata
            • Split VCF
          • Performance
        • API Reference
          • Command Line Interface
          • Python API
          • Cloud API
      • Biomedical Imaging
        • Introduction
        • Foundation
          • Data Model
          • Key Concepts
            • Arrays
            • Ingestion
            • Reads
            • User Defined Functions
          • Storage Format Spec
        • Quickstart
        • Tutorials
          • Basics
            • Ingestion
            • Read
              • OpenSlide
              • TileDB-Py
          • Advanced
            • Batched Ingestion
            • Chunked Ingestion
            • Machine Learning
              • PyTorch
            • Napari
    • Files
  • API Reference
  • Self-Hosting
    • Installation
    • Upgrades
    • Administrative Tasks
    • Image Customization
      • Customize User-Defined Function Images
      • AWS ECR Container Registry
      • Customize Jupyter Notebook Images
    • Single Sign-On
      • Configure Single Sign-On
      • OpenID Connect
      • Okta SCIM
      • Microsoft Entra
  • Glossary
  1. Structure
  2. Life Sciences
  3. Population Genomics
  4. Tutorials
  5. Advanced
  6. Scalable Queries

Population Genomics: Scalable Queries

life sciences
genomics (vcf)
tutorials
queries
Learn about using TileDB task graphs to perform distributed queries on TileDB-VCF datasets.
How to run this tutorial

You can run this tutorial only on TileDB Cloud. However, TileDB Cloud has a free tier. We strongly recommend that you sign up and run everything there, as that requires no installations or deployment.

You can take advantage of TileDB Cloud’s distributed computing capabilities to perform scalable queries in two ways:

  • Building your own custom distributed algorithms using UDFs and task graphs.
  • Leveraging the built-in distributed read capabilities of TileDB-VCF on TileDB Cloud.

This tutorial covers the second way. Namely, it shows you how you can query a large dataset with a single TileDB-VCF command on TileDB Cloud, which is automatically executed in a distributed manner across multiple cloud workers, completely serverlessly. For more information of TileDB Cloud’s scalability, visit the Key Concepts: Distributed Compute section.

First, set up your TileDB Cloud credentials, similar to Tutorials: Basic TileDB Cloud.

  • Python
import os

import tiledb

# You should set the appropriate environment variables with your keys.
# Get the keys from the environment variables.
tiledb_account = os.environ["TILEDB_ACCOUNT"]
tiledb_token = os.environ["TILEDB_REST_TOKEN"]
# or use your username and password (not recommended)
# tiledb_username = os.environ["TILEDB_USERNAME"]
# tiledb_password = os.environ["TILEDB_PASSWORD"]

# Get the bucket and region from environment variables
s3_bucket = os.environ["S3_BUCKET"]

# Set the AWS keys and region to the config of the default context
# This context initialization can be performed only once.
cfg = tiledb.Config(
    {
        "rest.token": tiledb_token,
        # or use your username and password (not recommended)
        # "rest.username": tiledb_username,
        # "rest.password": tiledb_password,
    }
)
ctx = tiledb.Ctx(cfg)

Next, import the necessary libraries.

  • Python
import os.path

import tiledb.cloud
import tiledb.cloud.vcf
import tiledbvcf

# Print library versions
print("TileDB core version: {}".format(tiledb.libtiledb.version()))
print("TileDB-Py version: {}".format(tiledb.version()))
print("TileDB-VCF version: {}".format(tiledbvcf.version))
print("TileDB-Cloud-Py version: {}".format(tiledb.cloud.version.version))
TileDB core version: (2, 24, 2)
TileDB-Py version: (0, 30, 2)
TileDB-VCF version: 0.33.3
TileDB-Cloud-Py version: 0.12.17

Choose a dataset to read. In this tutorial, you are using the preloaded and publicly accessible 1000 genome dataset. Retrieve all the samples (which are over 3,000), and define the attributes to retrieve and genomic ranges. Finally, issue the read query.

  • Python
# Define the dataset URI
dataset_uri = "tiledb://TileDB-Inc/gvcf-1kg-dragen-v376"

# Get all samples from it
ds = tiledbvcf.Dataset(dataset_uri, tiledb_config=cfg)
samples = ds.samples()

# Define attributes and ranges to query on
attrs = ["sample_name", "fmt_GT", "fmt_AD", "fmt_DP"]
regions = ["chr13:32396898-32397044", "chr13:32398162-32400268"]

# Perform the read, which is going to be executed in a distributed
# fashion.
df = tiledb.cloud.vcf.read(
    dataset_uri=dataset_uri,
    regions=regions,
    samples=samples,
    attrs=attrs,
    namespace="stavros",  # this specifies which account to charge
)
df.to_pandas()
sample_name fmt_GT fmt_AD fmt_DP
0 HG00146 [0, 0] [46, 0] 46
1 HG00116 [0, 0] [46, 0] 46
2 HG00107 [0, 0] [42, 0] 42
3 HG00131 [0, 0] [40, 0] 40
4 HG00118 [0, 0] [37, 0] 37
... ... ... ... ...
504490 NA20888 [0, 0] [32, 1] 33
504491 NA20901 [0, 0] [22, 0] 22
504492 NA21092 [0, 0] [28, 0] 28
504493 NA20888 [0, 0] [32, 0] 32
504494 NA21092 [0, 0] [24, 0] 24

504495 rows × 4 columns

Behind the scenes, this single command generates and deploys a task graph on TileDB Cloud, which executes the query in parallel across multiple machines. You can find the task graph detailed logs under Monitor -> Logs -> Task Graphs and choosing the corresponding task graph entry. This looks as follows.

A screenshot of the task graph on TileDB Cloud resulting from a TileDB-VCF distributed query. A screenshot of the task graph on TileDB Cloud resulting from a TileDB-VCF distributed query.

That’s it! All the serverless, distributed computing magic is built into a single TileDB-VCF command run on TileDB Cloud.T

Scalable Ingestion
Query Transforms