1. Structure
  2. AI & ML
  3. Vector Search
  4. Foundation
  5. Key Concepts
  6. Distance Metrics
  • Home
  • What is TileDB?
  • Get Started
  • Explore Content
  • Accounts
    • Individual Accounts
      • Apply for the Free Tier
      • Profile
        • Overview
        • Cloud Credentials
        • Storage Paths
        • REST API Tokens
        • Credits
    • Organization Admins
      • Create an Organization
      • Profile
        • Overview
        • Members
        • Cloud Credentials
        • Storage Paths
        • Billing
      • API Tokens
    • Organization Members
      • Organization Invitations
      • Profile
        • Overview
        • Members
        • Cloud Credentials
        • Storage Paths
        • Billing
      • API Tokens
  • Catalog
    • Introduction
    • Data
      • Arrays
      • Tables
      • Single-Cell (SOMA)
      • Genomics (VCF)
      • Biomedical Imaging
      • Vector Search
      • Files
    • Code
      • Notebooks
      • Dashboards
      • User-Defined Functions
      • Task Graphs
      • ML Models
    • Groups
    • Marketplace
    • Search
  • Collaborate
    • Introduction
    • Organizations
    • Access Control
      • Introduction
      • Share Assets
      • Asset Permissions
      • Public Assets
    • Logging
    • Marketplace
  • Analyze
    • Introduction
    • Slice Data
    • Multi-Region Redirection
    • Notebooks
      • Launch a Notebook
      • Usage
      • Widgets
      • Notebook Image Dependencies
    • Dashboards
      • Dashboards
      • Streamlit
    • Preview
    • User-Defined Functions
    • Task Graphs
    • Serverless SQL
    • Monitor
      • Task Log
      • Task Graph Log
  • Scale
    • Introduction
    • Task Graphs
    • API Usage
  • Structure
    • Why Structure Is Important
    • Arrays
      • Introduction
      • Quickstart
      • Foundation
        • Array Data Model
        • Key Concepts
          • Storage
            • Arrays
            • Dimensions
            • Attributes
            • Cells
            • Domain
            • Tiles
            • Data Layout
            • Compression
            • Encryption
            • Tile Filters
            • Array Schema
            • Schema Evolution
            • Fragments
            • Fragment Metadata
            • Commits
            • Indexing
            • Array Metadata
            • Datetimes
            • Groups
            • Object Stores
          • Compute
            • Writes
            • Deletions
            • Consolidation
            • Vacuuming
            • Time Traveling
            • Reads
            • Query Conditions
            • Aggregates
            • User-Defined Functions
            • Distributed Compute
            • Concurrency
            • Parallelism
        • Storage Format Spec
      • Tutorials
        • Basics
          • Basic Dense Array
          • Basic Sparse Array
          • Array Metadata
          • Compression
          • Encryption
          • Data Layout
          • Tile Filters
          • Datetimes
          • Multiple Attributes
          • Variable-Length Attributes
          • String Dimensions
          • Nullable Attributes
          • Multi-Range Reads
          • Query Conditions
          • Aggregates
          • Deletions
          • Catching Errors
          • Configuration
          • Basic S3 Example
          • Basic TileDB Cloud
          • fromDataFrame
          • Palmer Penguins
        • Advanced
          • Schema Evolution
          • Advanced Writes
            • Write at a Timestamp
            • Get Fragment Info
            • Consolidation
              • Fragments
              • Fragment List
              • Consolidation Plan
              • Commits
              • Fragment Metadata
              • Array Metadata
            • Vacuuming
              • Fragments
              • Commits
              • Fragment Metadata
              • Array Metadata
          • Advanced Reads
            • Get Fragment Info
            • Time Traveling
              • Introduction
              • Fragments
              • Array Metadata
              • Schema Evolution
          • Array Upgrade
          • Backends
            • Amazon S3
            • Azure Blob Storage
            • Google Cloud Storage
            • MinIO
            • Lustre
          • Virtual Filesystem
          • User-Defined Functions
          • Distributed Compute
          • Result Estimation
          • Incomplete Queries
        • Management
          • Array Schema
          • Groups
          • Object Management
        • Performance
          • Summary of Factors
          • Dense vs. Sparse
          • Dimensions vs. Attributes
          • Compression
          • Tiling and Data Layout
          • Tuning Writes
          • Tuning Reads
      • API Reference
    • Tables
      • Introduction
      • Quickstart
      • Foundation
        • Data Model
        • Key Concepts
          • Indexes
          • Columnar Storage
          • Compression
          • Data Manipulation
          • Optimize Tables
          • ACID
          • Serverless SQL
          • SQL Connectors
          • Dataframes
          • CSV Ingestion
      • Tutorials
        • Basics
          • Ingestion with SQL
          • CSV Ingestion
          • Basic S3 Example
          • Running Locally
        • Advanced
          • Scalable Ingestion
          • Scalable Queries
      • API Reference
    • AI & ML
      • Vector Search
        • Introduction
        • Quickstart
        • Foundation
          • Data Model
          • Key Concepts
            • Vector Search
            • Vector Databases
            • Algorithms
            • Distance Metrics
            • Updates
            • Deployment Methods
            • Architecture
            • Distributed Compute
          • Storage Format Spec
        • Tutorials
          • Basics
            • Ingestion & Querying
            • Updates
            • Deletions
            • Basic S3 Example
            • Running Locally
          • Advanced
            • Versioning
            • Time Traveling
            • Consolidation
            • Distributed Compute
            • RAG LLM
            • LLM Memory
            • File Search
            • Image Search
            • Protein Search
          • Performance
        • API Reference
      • ML Models
        • Introduction
        • Quickstart
        • Foundation
          • Basics
          • Storage
          • Cloud Execution
          • Why TileDB for Machine Learning
        • Tutorials
          • Ingestion
            • Data Ingestion
              • Dense Datasets
              • Sparse Datasets
            • ML Model Ingestion
          • Management
            • Array Schema
            • Machine Learning: Groups
            • Time Traveling
    • Life Sciences
      • Single-cell
        • Introduction
        • Quickstart
        • Foundation
          • Data Model
          • Key Concepts
            • Data Structures
            • Use of Apache Arrow
            • Join IDs
            • State Management
            • TileDB Cloud URIs
          • SOMA API Specification
        • Tutorials
          • Data Ingestion
          • Bulk Ingestion Tutorial
          • Data Access
          • Distributed Compute
          • Basic S3 Example
          • Multi-Experiment Queries
          • Appending Data to a SOMA Experiment
          • Add New Measurements
          • SQL Queries
          • Running Locally
          • Shapes in TileDB-SOMA
          • Drug Discovery App
        • Spatial
          • Introduction
          • Foundation
            • Spatial Data Model
            • Data Structures
          • Tutorials
            • Spatial Data Ingestion
            • Access Spatial Data
            • Manage Coordinate Spaces
        • API Reference
      • Population Genomics
        • Introduction
        • Quickstart
        • Foundation
          • Data Model
          • Key Concepts
            • The N+1 Problem
            • Architecture
            • Arrays
            • Ingestion
            • Reads
            • Variant Statistics
            • Annotations
            • User-Defined Functions
            • Tables and SQL
            • Distributed Compute
          • Storage Format Spec
        • Tutorials
          • Basics
            • Basic Ingestion
            • Basic Queries
            • Export to VCF
            • Add New Samples
            • Deleting Samples
            • Basic S3 Example
            • Basic TileDB Cloud
          • Advanced
            • Scalable Ingestion
            • Scalable Queries
            • Query Transforms
            • Handling Large Queries
            • Annotations
              • Finding Annotations
              • Embedded Annotations
              • External Annotations
              • Annotation VCFs
              • Ingesting Annotations
            • Variant Statistics
            • Tables and SQL
            • User-Defined Functions
            • Sample Metadata
            • Split VCF
          • Performance
        • API Reference
          • Command Line Interface
          • Python API
          • Cloud API
      • Biomedical Imaging
        • Introduction
        • Foundation
          • Data Model
          • Key Concepts
            • Arrays
            • Ingestion
            • Reads
            • User Defined Functions
          • Storage Format Spec
        • Quickstart
        • Tutorials
          • Basics
            • Ingestion
            • Read
              • OpenSlide
              • TileDB-Py
          • Advanced
            • Batched Ingestion
            • Chunked Ingestion
            • Machine Learning
              • PyTorch
            • Napari
    • Files
  • API Reference
  • Self-Hosting
    • Installation
    • Upgrades
    • Administrative Tasks
    • Image Customization
      • Customize User-Defined Function Images
      • AWS ECR Container Registry
      • Customize Jupyter Notebook Images
    • Single Sign-On
      • Configure Single Sign-On
      • OpenID Connect
      • Okta SCIM
      • Microsoft Entra
  • Glossary

On this page

  • Supported distance metrics
  • Sum of squares distance
    • Formula
    • Visualization
  • Euclidean distance
    • Formula
    • Visualization
  • Inner product
    • Formula
    • Visualization
  • Cosine distance
    • Formula
    • Visualization
  • Index algorithm and distance metric compatibility
    • Create an index with a specific distance metric
      • Cosine distance normalization
    • Query with distance metrics
  • Conclusion
  1. Structure
  2. AI & ML
  3. Vector Search
  4. Foundation
  5. Key Concepts
  6. Distance Metrics

Distance Metrics

ai/ml
vector search
foundation
distance metrics
Learn about the supported distance metrics in TileDB’s vector search functionality.

TileDB offers a variety of distance metrics for vector search. The distance metric is a key component of the vector search functionality, as it defines the similarity between vectors. This document explores the supported distance metrics and their formulas, and it provides visual representations.

Supported distance metrics

TileDB supports the following distance metrics:

  1. Sum of squares distance (Squared Euclidean distance)
  2. Euclidean distance (L2)
  3. Inner product (dot product)
  4. Cosine distance

The following sections explore each of these in detail.

Sum of squares distance

Sum of squares distance, also known as Squared Euclidean distance, is the sum of the squared differences between corresponding elements of two vectors.

Note: the sum of squares metric results in the same ordering as the L2 metric but it is faster computationally as it skips the internal square root computation.

Formula

\[ d(x, y) = \sum_{i=1}^n (x_i - y_i)^2 \]

Where \(x\) and \(y\) are vectors, and \(x_i\) and \(y_i\) are their respective components.

Visualization

A visualization of the sum of squares distance. A visualization of the sum of squares distance.

Euclidean distance

Euclidean distance is the “ordinary” straight-line distance between two points in Euclidean space. It’s the square root of the sum of squares distance.

Formula

\[ d(x, y) = \sqrt{\sum_{i=1}^n (x_i - y_i)^2} \]

Visualization

A visualization of the Euclidean distance. A visualization of the Euclidean distance.

Inner product

Inner product, or dot product, measures the cosine of the angle between two vectors, multiplied by their magnitudes. It’s often used when the magnitude of the vectors is important.

Formula

\[ d(x, y) = x \cdot y = \sum_{i=1}^n x_i y_i \]

Visualization

A visualization of the Inner product distance. A visualization of the Inner product distance.

Cosine distance

Cosine distance measures the cosine of the angle between two vectors, ignoring their magnitudes. It’s particularly useful when dealing with high-dimensional data.

Formula

\[ d(x, y) = 1 - \frac{x \cdot y}{||x|| \cdot ||y||} \]

Where \(||x||\) and \(||y||\) are the magnitudes (Euclidean norms) of vectors \(x\) and \(y\).

Visualization

A visualization of the cosine distance. A visualization of the cosine distance.

Index algorithm and distance metric compatibility

Index Algorithm Sum of Squares Euclidean Inner Product Cosine
FLAT ✅ ✅ ✅ ✅
IVF_FLAT ✅ ✅ ❌ ✅
VAMANA ✅ ✅ ❌ ✅

Create an index with a specific distance metric

When creating a vector search index, you can specify the distance metric using the distance_metric parameter in the ingest or create functions.

from tiledb.vector_search import ingest
from tiledb.vector_search import _tiledbvspy as vspy

index = ingest(
    index_type="IVF_FLAT",
    index_uri="path/to/index",
    input_vectors=input_vectors,
    distance_metric=vspy.DistanceMetric.COSINE,
    partitions=10,
)

The vspy.DistanceMetric enum provides the following options:

  • vspy.DistanceMetric.SUM_OF_SQUARES
  • vspy.DistanceMetric.L2
  • vspy.DistanceMetric.INNER_PRODUCT
  • vspy.DistanceMetric.COSINE

Cosine distance normalization

When using the cosine distance metric, TileDB-Vector-Search normalizes the vectors before indexing. This normalization happens automatically during the index creation process.

However, if your dataset is already normalized, you can disable the extra normalization step by setting normalized=True in the ingest function.

Query with distance metrics

When querying an index, the distance metric used during index creation will be applied automatically:

distances, ids = index.query(query_vectors, k=5)

The returned distances will be calculated using the metric specified during index creation.

Conclusion

Understanding these distance metrics is crucial for effective vector search in TileDB. Each metric has its strengths and is suited for different types of data and applications. When implementing vector search, consider the nature of your data and the specific requirements of your application to choose the most appropriate distance metric.

Algorithms
Updates