1. Structure
  2. Life Sciences
  3. Population Genomics
  4. Tutorials
  5. Advanced
  6. Query Transforms
  • Home
  • What is TileDB?
  • Get Started
  • Explore Content
  • Accounts
    • Individual Accounts
      • Apply for the Free Tier
      • Profile
        • Overview
        • Cloud Credentials
        • Storage Paths
        • REST API Tokens
        • Credits
    • Organization Admins
      • Create an Organization
      • Profile
        • Overview
        • Members
        • Cloud Credentials
        • Storage Paths
        • Billing
      • API Tokens
    • Organization Members
      • Organization Invitations
      • Profile
        • Overview
        • Members
        • Cloud Credentials
        • Storage Paths
        • Billing
      • API Tokens
  • Catalog
    • Introduction
    • Data
      • Arrays
      • Tables
      • Single-Cell (SOMA)
      • Genomics (VCF)
      • Biomedical Imaging
      • Vector Search
      • Files
    • Code
      • Notebooks
      • Dashboards
      • User-Defined Functions
      • Task Graphs
      • ML Models
    • Groups
    • Marketplace
    • Search
  • Collaborate
    • Introduction
    • Organizations
    • Access Control
      • Introduction
      • Share Assets
      • Asset Permissions
      • Public Assets
    • Logging
    • Marketplace
  • Analyze
    • Introduction
    • Slice Data
    • Multi-Region Redirection
    • Notebooks
      • Launch a Notebook
      • Usage
      • Widgets
      • Notebook Image Dependencies
    • Dashboards
      • Dashboards
      • Streamlit
    • Preview
    • User-Defined Functions
    • Task Graphs
    • Serverless SQL
    • Monitor
      • Task Log
      • Task Graph Log
  • Scale
    • Introduction
    • Task Graphs
    • API Usage
  • Structure
    • Why Structure Is Important
    • Arrays
      • Introduction
      • Quickstart
      • Foundation
        • Array Data Model
        • Key Concepts
          • Storage
            • Arrays
            • Dimensions
            • Attributes
            • Cells
            • Domain
            • Tiles
            • Data Layout
            • Compression
            • Encryption
            • Tile Filters
            • Array Schema
            • Schema Evolution
            • Fragments
            • Fragment Metadata
            • Commits
            • Indexing
            • Array Metadata
            • Datetimes
            • Groups
            • Object Stores
          • Compute
            • Writes
            • Deletions
            • Consolidation
            • Vacuuming
            • Time Traveling
            • Reads
            • Query Conditions
            • Aggregates
            • User-Defined Functions
            • Distributed Compute
            • Concurrency
            • Parallelism
        • Storage Format Spec
      • Tutorials
        • Basics
          • Basic Dense Array
          • Basic Sparse Array
          • Array Metadata
          • Compression
          • Encryption
          • Data Layout
          • Tile Filters
          • Datetimes
          • Multiple Attributes
          • Variable-Length Attributes
          • String Dimensions
          • Nullable Attributes
          • Multi-Range Reads
          • Query Conditions
          • Aggregates
          • Deletions
          • Catching Errors
          • Configuration
          • Basic S3 Example
          • Basic TileDB Cloud
          • fromDataFrame
          • Palmer Penguins
        • Advanced
          • Schema Evolution
          • Advanced Writes
            • Write at a Timestamp
            • Get Fragment Info
            • Consolidation
              • Fragments
              • Fragment List
              • Consolidation Plan
              • Commits
              • Fragment Metadata
              • Array Metadata
            • Vacuuming
              • Fragments
              • Commits
              • Fragment Metadata
              • Array Metadata
          • Advanced Reads
            • Get Fragment Info
            • Time Traveling
              • Introduction
              • Fragments
              • Array Metadata
              • Schema Evolution
          • Array Upgrade
          • Backends
            • Amazon S3
            • Azure Blob Storage
            • Google Cloud Storage
            • MinIO
            • Lustre
          • Virtual Filesystem
          • User-Defined Functions
          • Distributed Compute
          • Result Estimation
          • Incomplete Queries
        • Management
          • Array Schema
          • Groups
          • Object Management
        • Performance
          • Summary of Factors
          • Dense vs. Sparse
          • Dimensions vs. Attributes
          • Compression
          • Tiling and Data Layout
          • Tuning Writes
          • Tuning Reads
      • API Reference
    • Tables
      • Introduction
      • Quickstart
      • Foundation
        • Data Model
        • Key Concepts
          • Indexes
          • Columnar Storage
          • Compression
          • Data Manipulation
          • Optimize Tables
          • ACID
          • Serverless SQL
          • SQL Connectors
          • Dataframes
          • CSV Ingestion
      • Tutorials
        • Basics
          • Ingestion with SQL
          • CSV Ingestion
          • Basic S3 Example
          • Running Locally
        • Advanced
          • Scalable Ingestion
          • Scalable Queries
      • API Reference
    • AI & ML
      • Vector Search
        • Introduction
        • Quickstart
        • Foundation
          • Data Model
          • Key Concepts
            • Vector Search
            • Vector Databases
            • Algorithms
            • Distance Metrics
            • Updates
            • Deployment Methods
            • Architecture
            • Distributed Compute
          • Storage Format Spec
        • Tutorials
          • Basics
            • Ingestion & Querying
            • Updates
            • Deletions
            • Basic S3 Example
            • Running Locally
          • Advanced
            • Versioning
            • Time Traveling
            • Consolidation
            • Distributed Compute
            • RAG LLM
            • LLM Memory
            • File Search
            • Image Search
            • Protein Search
          • Performance
        • API Reference
      • ML Models
        • Introduction
        • Quickstart
        • Foundation
          • Basics
          • Storage
          • Cloud Execution
          • Why TileDB for Machine Learning
        • Tutorials
          • Ingestion
            • Data Ingestion
              • Dense Datasets
              • Sparse Datasets
            • ML Model Ingestion
          • Management
            • Array Schema
            • Machine Learning: Groups
            • Time Traveling
    • Life Sciences
      • Single-cell
        • Introduction
        • Quickstart
        • Foundation
          • Data Model
          • Key Concepts
            • Data Structures
            • Use of Apache Arrow
            • Join IDs
            • State Management
            • TileDB Cloud URIs
          • SOMA API Specification
        • Tutorials
          • Data Ingestion
          • Bulk Ingestion Tutorial
          • Data Access
          • Distributed Compute
          • Basic S3 Example
          • Multi-Experiment Queries
          • Appending Data to a SOMA Experiment
          • Add New Measurements
          • SQL Queries
          • Running Locally
          • Shapes in TileDB-SOMA
          • Drug Discovery App
        • Spatial
          • Introduction
          • Foundation
            • Spatial Data Model
            • Data Structures
          • Tutorials
            • Spatial Data Ingestion
            • Access Spatial Data
            • Manage Coordinate Spaces
        • API Reference
      • Population Genomics
        • Introduction
        • Quickstart
        • Foundation
          • Data Model
          • Key Concepts
            • The N+1 Problem
            • Architecture
            • Arrays
            • Ingestion
            • Reads
            • Variant Statistics
            • Annotations
            • User-Defined Functions
            • Tables and SQL
            • Distributed Compute
          • Storage Format Spec
        • Tutorials
          • Basics
            • Basic Ingestion
            • Basic Queries
            • Export to VCF
            • Add New Samples
            • Deleting Samples
            • Basic S3 Example
            • Basic TileDB Cloud
          • Advanced
            • Scalable Ingestion
            • Scalable Queries
            • Query Transforms
            • Handling Large Queries
            • Annotations
              • Finding Annotations
              • Embedded Annotations
              • External Annotations
              • Annotation VCFs
              • Ingesting Annotations
            • Variant Statistics
            • Tables and SQL
            • User-Defined Functions
            • Sample Metadata
            • Split VCF
          • Performance
        • API Reference
          • Command Line Interface
          • Python API
          • Cloud API
      • Biomedical Imaging
        • Introduction
        • Foundation
          • Data Model
          • Key Concepts
            • Arrays
            • Ingestion
            • Reads
            • User Defined Functions
          • Storage Format Spec
        • Quickstart
        • Tutorials
          • Basics
            • Ingestion
            • Read
              • OpenSlide
              • TileDB-Py
          • Advanced
            • Batched Ingestion
            • Chunked Ingestion
            • Machine Learning
              • PyTorch
            • Napari
    • Files
  • API Reference
  • Self-Hosting
    • Installation
    • Upgrades
    • Administrative Tasks
    • Image Customization
      • Customize User-Defined Function Images
      • AWS ECR Container Registry
      • Customize Jupyter Notebook Images
    • Single Sign-On
      • Configure Single Sign-On
      • OpenID Connect
      • Okta SCIM
      • Microsoft Entra
  • Glossary
  1. Structure
  2. Life Sciences
  3. Population Genomics
  4. Tutorials
  5. Advanced
  6. Query Transforms

Query Transforms

life sciences
genomics (vcf)
tutorials
queries
Learn about using transforms in TileDB-VCF distributed queries.
How to run this tutorial

You can run this tutorial only on TileDB Cloud. However, TileDB Cloud has a free tier. We strongly recommend that you sign up and run everything there, as that requires no installations or deployment.

A VCF distributed query transform will transform the results of VCF query in a distributed fashion. Each UDF node in the VCF query will run the same transform function on its results. The transform argument provides a means for the user to supply a method to modify VCF query results without assembling the entire dataframe.

Example use models for the query transform are as follows:

  • Filter query results to remove records that are not needed in downstream analysis.
  • Create new columns that are derived from the original query columns.
  • Modify column names and column order.
  • Populate a new array based on the results of the query. For example, summary statistics or ML model inputs.

This tutorial shows an example of filtering VCF query results based on the value of an INFO field, using public dataset tiledb://TileDB-Inc/vcf-1kg-dragen-v376, which you can locate on the TileDB Cloud Marketplace.

Import the necessary libraries, and set the VCF URI. If you are running this from a local notebook, visit the Tutorials: Basic TileDB Cloud for more information on how to set your TileDB Cloud credentials in a configuration object (this step can be omitted inside a TileDB Cloud notebook).

  • Python
import tiledb.cloud.vcf as vcf
import tiledbvcf

# Set the VCF URI
vcf_uri = "tiledb://TileDB-Inc/vcf-1kg-dragen-v376"

Open the dataset for reading, and get the sample names and number.

  • Python
# Get the samples in the dataset
ds = tiledbvcf.Dataset(vcf_uri)
samples = ds.samples()
print(f"{len(samples):,} samples")
3,202 samples

A query transform filter takes a PyArrow table as input and returns a PyArrow table.

The vcf_filter function below shows how to pass an argument to a transform function. The vcf_filter function returns a transform_result function with the signature required by the vcf.read function.

The transform_result function:

  1. Filters the query results based on the filter string.
  2. Splits the alleles column into a ref and alt column and drops the alleles column.
  • Python
from functools import partial

import pyarrow as pa


# Create a function that applies a filter to the input table
# and splits alleles into ref and alt
def vcf_filter(filter: str):
    def transform_result(table: pa.Table, filter: str) -> pa.Table:
        # Convert arrow table to pandas and filter
        df = table.to_pandas().query(filter)

        # Split alleles into ref and alt
        df["ref"] = df["alleles"].str[0]
        df["alt"] = df["alleles"].apply(lambda x: ",".join(x[1:]))
        df = df.drop("alleles", axis=1)

        # Return arrow table
        return pa.Table.from_pandas(df)

    return partial(transform_result, filter=filter)

Pass the filter string to the vcf_filter transform function and submit the query.

  • Python
# Set the regions, attributes, and filter for the query
regions = "chr21:8220186-8221000"
attrs = [
    "sample_name",
    "contig",
    "pos_start",
    "alleles",
    "info_DP",
    "fmt_GT",
]
filter = "info_DP > 100"

# Submit the query, setting the vcf_filter function
# as a result transform
df = vcf.read(
    dataset_uri=vcf_uri,
    attrs=attrs,
    regions=regions,
    samples=samples,
    transform_result=vcf_filter(filter),
).to_pandas()
df
sample_name contig pos_start info_DP fmt_GT ref alt
0 HG00100 chr21 8220178 [287] [0, 1] TCTCTCTCTCTCCCTCCCTCC T
1 HG00102 chr21 8220178 [346] [0, 1] TCTCTCTCTCTCCCTCCCTCCCTCCCTCC T
2 HG00119 chr21 8220178 [293] [0, 1] TCTCTCTCTCTCCCTCCCTCCCTCC T
3 HG00126 chr21 8220178 [249] [0, 1] TCTCTCTCTCTCCCTCC T
4 HG00133 chr21 8220178 [418] [0, 1] TCTCTCTCTCTCC T
... ... ... ... ... ... ... ...
260 NA21104 chr21 8220745 [135] [0, 1] TTC T
261 NA21105 chr21 8220745 [127] [0, 1] TTC T
263 NA21125 chr21 8220745 [139] [0, 1] TTC T
270 NA21102 chr21 8220747 [116] [0, 1] CTT C
273 NA20889 chr21 8220762 [146] [0, 1] GCTCTCGCT G

9626 rows × 7 columns

Scalable Queries
Handling Large Queries