1. Structure
  2. Arrays
  3. Tutorials
  4. Advanced
  5. Advanced Writes
  6. Vacuuming
  7. Fragment Metadata
  • Home
  • What is TileDB?
  • Get Started
  • Explore Content
  • Accounts
    • Individual Accounts
      • Apply for the Free Tier
      • Profile
        • Overview
        • Cloud Credentials
        • Storage Paths
        • REST API Tokens
        • Credits
    • Organization Admins
      • Create an Organization
      • Profile
        • Overview
        • Members
        • Cloud Credentials
        • Storage Paths
        • Billing
      • API Tokens
    • Organization Members
      • Organization Invitations
      • Profile
        • Overview
        • Members
        • Cloud Credentials
        • Storage Paths
        • Billing
      • API Tokens
  • Catalog
    • Introduction
    • Data
      • Arrays
      • Tables
      • Single-Cell (SOMA)
      • Genomics (VCF)
      • Biomedical Imaging
      • Vector Search
      • Files
    • Code
      • Notebooks
      • Dashboards
      • User-Defined Functions
      • Task Graphs
      • ML Models
    • Groups
    • Marketplace
    • Search
  • Collaborate
    • Introduction
    • Organizations
    • Access Control
      • Introduction
      • Share Assets
      • Asset Permissions
      • Public Assets
    • Logging
    • Marketplace
  • Analyze
    • Introduction
    • Slice Data
    • Multi-Region Redirection
    • Notebooks
      • Launch a Notebook
      • Usage
      • Widgets
      • Notebook Image Dependencies
    • Dashboards
      • Dashboards
      • Streamlit
    • Preview
    • User-Defined Functions
    • Task Graphs
    • Serverless SQL
    • Monitor
      • Task Log
      • Task Graph Log
  • Scale
    • Introduction
    • Task Graphs
    • API Usage
  • Structure
    • Why Structure Is Important
    • Arrays
      • Introduction
      • Quickstart
      • Foundation
        • Array Data Model
        • Key Concepts
          • Storage
            • Arrays
            • Dimensions
            • Attributes
            • Cells
            • Domain
            • Tiles
            • Data Layout
            • Compression
            • Encryption
            • Tile Filters
            • Array Schema
            • Schema Evolution
            • Fragments
            • Fragment Metadata
            • Commits
            • Indexing
            • Array Metadata
            • Datetimes
            • Groups
            • Object Stores
          • Compute
            • Writes
            • Deletions
            • Consolidation
            • Vacuuming
            • Time Traveling
            • Reads
            • Query Conditions
            • Aggregates
            • User-Defined Functions
            • Distributed Compute
            • Concurrency
            • Parallelism
        • Storage Format Spec
      • Tutorials
        • Basics
          • Basic Dense Array
          • Basic Sparse Array
          • Array Metadata
          • Compression
          • Encryption
          • Data Layout
          • Tile Filters
          • Datetimes
          • Multiple Attributes
          • Variable-Length Attributes
          • String Dimensions
          • Nullable Attributes
          • Multi-Range Reads
          • Query Conditions
          • Aggregates
          • Deletions
          • Catching Errors
          • Configuration
          • Basic S3 Example
          • Basic TileDB Cloud
          • fromDataFrame
          • Palmer Penguins
        • Advanced
          • Schema Evolution
          • Advanced Writes
            • Write at a Timestamp
            • Get Fragment Info
            • Consolidation
              • Fragments
              • Fragment List
              • Consolidation Plan
              • Commits
              • Fragment Metadata
              • Array Metadata
            • Vacuuming
              • Fragments
              • Commits
              • Fragment Metadata
              • Array Metadata
          • Advanced Reads
            • Get Fragment Info
            • Time Traveling
              • Introduction
              • Fragments
              • Array Metadata
              • Schema Evolution
          • Array Upgrade
          • Backends
            • Amazon S3
            • Azure Blob Storage
            • Google Cloud Storage
            • MinIO
            • Lustre
          • Virtual Filesystem
          • User-Defined Functions
          • Distributed Compute
          • Result Estimation
          • Incomplete Queries
        • Management
          • Array Schema
          • Groups
          • Object Management
        • Performance
          • Summary of Factors
          • Dense vs. Sparse
          • Dimensions vs. Attributes
          • Compression
          • Tiling and Data Layout
          • Tuning Writes
          • Tuning Reads
      • API Reference
    • Tables
      • Introduction
      • Quickstart
      • Foundation
        • Data Model
        • Key Concepts
          • Indexes
          • Columnar Storage
          • Compression
          • Data Manipulation
          • Optimize Tables
          • ACID
          • Serverless SQL
          • SQL Connectors
          • Dataframes
          • CSV Ingestion
      • Tutorials
        • Basics
          • Ingestion with SQL
          • CSV Ingestion
          • Basic S3 Example
          • Running Locally
        • Advanced
          • Scalable Ingestion
          • Scalable Queries
      • API Reference
    • AI & ML
      • Vector Search
        • Introduction
        • Quickstart
        • Foundation
          • Data Model
          • Key Concepts
            • Vector Search
            • Vector Databases
            • Algorithms
            • Distance Metrics
            • Updates
            • Deployment Methods
            • Architecture
            • Distributed Compute
          • Storage Format Spec
        • Tutorials
          • Basics
            • Ingestion & Querying
            • Updates
            • Deletions
            • Basic S3 Example
            • Running Locally
          • Advanced
            • Versioning
            • Time Traveling
            • Consolidation
            • Distributed Compute
            • RAG LLM
            • LLM Memory
            • File Search
            • Image Search
            • Protein Search
          • Performance
        • API Reference
      • ML Models
        • Introduction
        • Quickstart
        • Foundation
          • Basics
          • Storage
          • Cloud Execution
          • Why TileDB for Machine Learning
        • Tutorials
          • Ingestion
            • Data Ingestion
              • Dense Datasets
              • Sparse Datasets
            • ML Model Ingestion
          • Management
            • Array Schema
            • Machine Learning: Groups
            • Time Traveling
    • Life Sciences
      • Single-cell
        • Introduction
        • Quickstart
        • Foundation
          • Data Model
          • Key Concepts
            • Data Structures
            • Use of Apache Arrow
            • Join IDs
            • State Management
            • TileDB Cloud URIs
          • SOMA API Specification
        • Tutorials
          • Data Ingestion
          • Bulk Ingestion Tutorial
          • Data Access
          • Distributed Compute
          • Basic S3 Example
          • Multi-Experiment Queries
          • Appending Data to a SOMA Experiment
          • Add New Measurements
          • SQL Queries
          • Running Locally
          • Shapes in TileDB-SOMA
          • Drug Discovery App
        • Spatial
          • Introduction
          • Foundation
            • Spatial Data Model
            • Data Structures
          • Tutorials
            • Spatial Data Ingestion
            • Access Spatial Data
            • Manage Coordinate Spaces
        • API Reference
      • Population Genomics
        • Introduction
        • Quickstart
        • Foundation
          • Data Model
          • Key Concepts
            • The N+1 Problem
            • Architecture
            • Arrays
            • Ingestion
            • Reads
            • Variant Statistics
            • Annotations
            • User-Defined Functions
            • Tables and SQL
            • Distributed Compute
          • Storage Format Spec
        • Tutorials
          • Basics
            • Basic Ingestion
            • Basic Queries
            • Export to VCF
            • Add New Samples
            • Deleting Samples
            • Basic S3 Example
            • Basic TileDB Cloud
          • Advanced
            • Scalable Ingestion
            • Scalable Queries
            • Query Transforms
            • Handling Large Queries
            • Annotations
              • Finding Annotations
              • Embedded Annotations
              • External Annotations
              • Annotation VCFs
              • Ingesting Annotations
            • Variant Statistics
            • Tables and SQL
            • User-Defined Functions
            • Sample Metadata
            • Split VCF
          • Performance
        • API Reference
          • Command Line Interface
          • Python API
          • Cloud API
      • Biomedical Imaging
        • Introduction
        • Foundation
          • Data Model
          • Key Concepts
            • Arrays
            • Ingestion
            • Reads
            • User Defined Functions
          • Storage Format Spec
        • Quickstart
        • Tutorials
          • Basics
            • Ingestion
            • Read
              • OpenSlide
              • TileDB-Py
          • Advanced
            • Batched Ingestion
            • Chunked Ingestion
            • Machine Learning
              • PyTorch
            • Napari
    • Files
  • API Reference
  • Self-Hosting
    • Installation
    • Upgrades
    • Administrative Tasks
    • Image Customization
      • Customize User-Defined Function Images
      • AWS ECR Container Registry
      • Customize Jupyter Notebook Images
    • Single Sign-On
      • Configure Single Sign-On
      • OpenID Connect
      • Okta SCIM
      • Microsoft Entra
  • Glossary
  1. Structure
  2. Arrays
  3. Tutorials
  4. Advanced
  5. Advanced Writes
  6. Vacuuming
  7. Fragment Metadata

Vacuum Consolidated Fragment Metadata

arrays
tutorials
python
r
fragment metadata
vacuuming
Learn how to vacuum fragment metadata after fragment metadata consolidation.
How to run this tutorial

You can run this tutorial in two ways:

  1. Locally on your machine.
  2. On TileDB Cloud.

However, since TileDB Cloud has a free tier, we strongly recommend that you sign up and run everything there, as that requires no installations or deployment.

This tutorial demonstrates how to vacuum fragment metadata of arrays, after consolidation takes place. Before running this tutorial, it is recommended that you read the following sections:

  • Key Concepts: Consolidation
  • Key Concepts: Vacuuming

First, import the necessary libraries, set the array URI (i.e., its path, which in this tutorial will be on local storage), and delete any previously created arrays with the same name.

  • Python
  • R
# Import necessary libraries
import os.path
import shutil

import numpy as np
import tiledb

# Set array URI
array_uri = os.path.expanduser("~/vacuuming_fragment_meta")

# Delete array if it already exists
if os.path.exists(array_uri):
    shutil.rmtree(array_uri)
# Import necessary libraries
library(tiledb)

# Set array URI
array_uri <- path.expand("~/vacuuming_fragment_meta_r")

# Delete array if it already exists
if (file.exists(array_uri)) {
  unlink(array_uri, recursive = TRUE)
}

Next, create the array by specifying its schema. This example uses a sparse array, but the functionality is similar for dense arrays.

  • Python
  • R
# Create the two dimensions
d1 = tiledb.Dim(name="d1", domain=(0, 3), tile=2, dtype=np.int32)
d2 = tiledb.Dim(name="d2", domain=(0, 3), tile=2, dtype=np.int32)

# Create a domain using the two dimensions
dom = tiledb.Domain(d1, d2)

# Create an attribute
a = tiledb.Attr(name="a", dtype=np.int32)

# Create the array schema with `sparse=True`.
sch = tiledb.ArraySchema(domain=dom, sparse=True, attrs=[a])

# Create the array on disk (it will initially be empty)
tiledb.Array.create(array_uri, sch)
# Create the two dimensions
d1 <- tiledb_dim("d1", c(0L, 3L), 2L, "INT32")
d2 <- tiledb_dim("d2", c(0L, 3L), 2L, "INT32")

# Create a domain using the two dimensions
dom <- tiledb_domain(dims = c(d1, d2))

# Create an attribute
a <- tiledb_attr("a", type = "INT32")

# Create the array schema, setting `sparse = TRUE`
sch <- tiledb_array_schema(dom, a, sparse = TRUE)

# Create the array on disk (it will initially be empty)
arr <- tiledb_array_create(array_uri, sch)

Write some data to the array.

  • Python
  • R
# Prepare some data in numpy arrays
d1_data = np.array([2, 0, 3], dtype=np.int32)
d2_data = np.array([0, 1, 1], dtype=np.int32)
a_data = np.array([4, 1, 6], dtype=np.int32)

# Open the array in write mode and write the data in COO format
with tiledb.open(array_uri, "w") as A:
    A[d1_data, d2_data] = a_data
# Prepare some data in an array
d1_data <- c(2L, 0L, 3L)
d2_data <- c(0L, 1L, 1L)
a_data <- c(4L, 1L, 6L)

# Open the array for writing and write data to the array
arr <- tiledb_array(
  uri = array_uri,
  query_type = "WRITE",
  return_as = "data.frame"
)
arr[d1_data, d2_data] <- a_data

# Close the array
arr <- tiledb_array_close(arr)

Perform a second write, so that two fragments are generated.

  • Python
  • R
# Prepare some data in numpy arrays
d1_data = np.array([2, 0, 1], dtype=np.int32)
d2_data = np.array([2, 3, 3], dtype=np.int32)
a_data = np.array([5, 2, 3], dtype=np.int32)

# Open the array in write mode and write the data in COO format
with tiledb.open(array_uri, "w") as A:
    A[d1_data, d2_data] = a_data
# Prepare some data in an array
d1_data <- c(2L, 0L, 3L)
d2_data <- c(2L, 3L, 3L)
a_data <- c(5L, 2L, 3L)

# Open the array for writing and write data to the array
arr <- tiledb_array_open(
  arr,
  type = "WRITE"
)
arr[d1_data, d2_data] <- a_data

# Close the array
arr <- tiledb_array_close(arr)

Now consolidate the array, passing fragment_meta as the value of configuration parameter sm.consolidation.mode.

  • Python
  • R
# Consolidate
config = tiledb.Config({"sm.consolidation.mode": "fragment_meta"})
tiledb.consolidate(array_uri, config=config)
# Consolidate
cfg <- tiledb_config(
  config = c(
    "sm.consolidation.mode" = "fragment_meta"
  )
)

array_consolidate(array_uri, cfg = cfg)

Perform a third write, as you need to consolidate a second time to demonstrate the vacuuming functionality for fragment metadata.

  • Python
  • R
# Prepare some data in numpy arrays
d1_data = np.array([0], dtype=np.int32)
d2_data = np.array([0], dtype=np.int32)
a_data = np.array([0], dtype=np.int32)

# Open the array in write mode and write the data in COO format
with tiledb.open(array_uri, "w") as A:
    A[d1_data, d2_data] = a_data
# Prepare some data in an array
d1_data <- c(0L)
d2_data <- c(0L)
a_data <- c(0L)

# Open the array for writing and write data to the array
arr <- tiledb_array_open(
  arr,
  type = "WRITE"
)
arr[d1_data, d2_data] <- a_data

# Close the array
arr <- tiledb_array_close(arr)

Consolidate the fragment metadata once again.

  • Python
  • R
# Consolidate
config = tiledb.Config({"sm.consolidation.mode": "fragment_meta"})
tiledb.consolidate(array_uri, config=config)
# Consolidate
cfg <- tiledb_config(
  config = c(
    "sm.consolidation.mode" = "fragment_meta"
  )
)

array_consolidate(array_uri, cfg = cfg)

Inspecting the file hierarchy of the array, observe the two files inside the __fragment_meta directory: one from the first consolidation operation and one from the second.

/Users/stavrospapadopoulos/vacuuming_fragment_meta
├── __commits
│   ├── __1716157715780_1716157715780_46056e69bc7252f6465a33807b5f5cbc_21.wrt
│   ├── __1716157715788_1716157715788_50cf09972a02607b967c911a37f26991_21.wrt
│   └── __1716157715803_1716157715803_1bcd9a8607ba94fd01084384e8848fe0_21.wrt
├── __fragment_meta
│   ├── __1716157715780_1716157715788_185d305eba80aadf0c97cdc8c3f4947c_21.meta
│   └── __1716157715780_1716157715803_15d36422e125b66eeb0391c601188222_21.meta
├── __fragments
│   ├── __1716157715780_1716157715780_46056e69bc7252f6465a33807b5f5cbc_21
│   │   ├── __fragment_metadata.tdb
│   │   ├── a0.tdb
│   │   ├── d0.tdb
│   │   └── d1.tdb
│   ├── __1716157715788_1716157715788_50cf09972a02607b967c911a37f26991_21
│   │   ├── __fragment_metadata.tdb
│   │   ├── a0.tdb
│   │   ├── d0.tdb
│   │   └── d1.tdb
│   └── __1716157715803_1716157715803_1bcd9a8607ba94fd01084384e8848fe0_21
│       ├── __fragment_metadata.tdb
│       ├── a0.tdb
│       ├── d0.tdb
│       └── d1.tdb
├── __labels
├── __meta
└── __schema
    ├── __1716157715776_1716157715776_00000002693ee06535fe291535511403
    └── __enumerations

11 directories, 18 files

Read the array and observe that all the data from the three writes are in the result, as expected.

  • Python
  • R
# Read array
with tiledb.open(array_uri, "r") as A:
    print(A[:])
OrderedDict({'a': array([0, 1, 2, 3, 4, 6, 5], dtype=int32), 'd1': array([0, 0, 0, 1, 2, 3, 2], dtype=int32), 'd2': array([0, 1, 3, 3, 0, 1, 2], dtype=int32)})
# Open the array in read mode
arr <- tiledb_array_open(arr, type = "READ")

# Show the entire array
cat("Entire array:\n")
print(arr[])

arr <- tiledb_array_close(arr)
Entire array:
  d1 d2 a
1  0  0 0
2  0  1 1
3  2  0 4
4  3  1 6
5  0  3 2
6  2  2 5
7  3  3 3

Now perform a vacuuming operation, by passing fragment_meta as the value of configuration parameter sm.vacuum.mode.

  • Python
  • R
# Vacuum
config = tiledb.Config({"sm.vacuum.mode": "fragment_meta"})
tiledb.vacuum(array_uri, config=config)
# Vacuum
cfg <- tiledb_config(
  config = c(
    "sm.vacuum.mode" = "array_meta"
  )
)

array_vacuum(array_uri, cfg = cfg)

Inspecting the file hierarchy of the array again, observe the single file in the __fragment_meta directory, which contains the fragment metadata from all the three writes performed above.

/Users/stavrospapadopoulos/vacuuming_fragment_meta
├── __commits
│   ├── __1716157715780_1716157715780_46056e69bc7252f6465a33807b5f5cbc_21.wrt
│   ├── __1716157715788_1716157715788_50cf09972a02607b967c911a37f26991_21.wrt
│   └── __1716157715803_1716157715803_1bcd9a8607ba94fd01084384e8848fe0_21.wrt
├── __fragment_meta
│   └── __1716157715780_1716157715803_15d36422e125b66eeb0391c601188222_21.meta
├── __fragments
│   ├── __1716157715780_1716157715780_46056e69bc7252f6465a33807b5f5cbc_21
│   │   ├── __fragment_metadata.tdb
│   │   ├── a0.tdb
│   │   ├── d0.tdb
│   │   └── d1.tdb
│   ├── __1716157715788_1716157715788_50cf09972a02607b967c911a37f26991_21
│   │   ├── __fragment_metadata.tdb
│   │   ├── a0.tdb
│   │   ├── d0.tdb
│   │   └── d1.tdb
│   └── __1716157715803_1716157715803_1bcd9a8607ba94fd01084384e8848fe0_21
│       ├── __fragment_metadata.tdb
│       ├── a0.tdb
│       ├── d0.tdb
│       └── d1.tdb
├── __labels
├── __meta
└── __schema
    ├── __1716157715776_1716157715776_00000002693ee06535fe291535511403
    └── __enumerations

11 directories, 17 files

Reading the array again, all the data from the two writes is returned, again as expected. Vacuuming (in combination with consolidation), helps significantly boost performance in the presence of multiple write operations. For more details, visit the Performance: Tuning Writes section.

  • Python
  • R
# Read array
with tiledb.open(array_uri, "r") as A:
    print(A[:])
OrderedDict({'a': array([0, 1, 2, 3, 4, 6, 5], dtype=int32), 'd1': array([0, 0, 0, 1, 2, 3, 2], dtype=int32), 'd2': array([0, 1, 3, 3, 0, 1, 2], dtype=int32)})
# Open the array in read mode
arr <- tiledb_array_open(arr, type = "READ")

# Show the entire array
cat("Entire array:\n")
print(arr[])

arr <- tiledb_array_close(arr)
Entire array:
  d1 d2 a
1  0  0 0
2  0  1 1
3  2  0 4
4  3  1 6
5  0  3 2
6  2  2 5
7  3  3 3

Clean up in the end by deleting the array.

  • Python
  • R
# Delete the array
if os.path.exists(array_uri):
    shutil.rmtree(array_uri)
# Delete the array
if (file.exists(array_uri)) {
  unlink(array_uri, recursive = TRUE)
}
Commits
Array Metadata