1. Structure
  2. Life Sciences
  3. Population Genomics
  4. Tutorials
  5. Basics
  6. Deleting Samples
  • Home
  • What is TileDB?
  • Get Started
  • Explore Content
  • Accounts
    • Individual Accounts
      • Apply for the Free Tier
      • Profile
        • Overview
        • Cloud Credentials
        • Storage Paths
        • REST API Tokens
        • Credits
    • Organization Admins
      • Create an Organization
      • Profile
        • Overview
        • Members
        • Cloud Credentials
        • Storage Paths
        • Billing
      • API Tokens
    • Organization Members
      • Organization Invitations
      • Profile
        • Overview
        • Members
        • Cloud Credentials
        • Storage Paths
        • Billing
      • API Tokens
  • Catalog
    • Introduction
    • Data
      • Arrays
      • Tables
      • Single-Cell (SOMA)
      • Genomics (VCF)
      • Biomedical Imaging
      • Vector Search
      • Files
    • Code
      • Notebooks
      • Dashboards
      • User-Defined Functions
      • Task Graphs
      • ML Models
    • Groups
    • Marketplace
    • Search
  • Collaborate
    • Introduction
    • Organizations
    • Access Control
      • Introduction
      • Share Assets
      • Asset Permissions
      • Public Assets
    • Logging
    • Marketplace
  • Analyze
    • Introduction
    • Slice Data
    • Multi-Region Redirection
    • Notebooks
      • Launch a Notebook
      • Usage
      • Widgets
      • Notebook Image Dependencies
    • Dashboards
      • Dashboards
      • Streamlit
    • Preview
    • User-Defined Functions
    • Task Graphs
    • Serverless SQL
    • Monitor
      • Task Log
      • Task Graph Log
  • Scale
    • Introduction
    • Task Graphs
    • API Usage
  • Structure
    • Why Structure Is Important
    • Arrays
      • Introduction
      • Quickstart
      • Foundation
        • Array Data Model
        • Key Concepts
          • Storage
            • Arrays
            • Dimensions
            • Attributes
            • Cells
            • Domain
            • Tiles
            • Data Layout
            • Compression
            • Encryption
            • Tile Filters
            • Array Schema
            • Schema Evolution
            • Fragments
            • Fragment Metadata
            • Commits
            • Indexing
            • Array Metadata
            • Datetimes
            • Groups
            • Object Stores
          • Compute
            • Writes
            • Deletions
            • Consolidation
            • Vacuuming
            • Time Traveling
            • Reads
            • Query Conditions
            • Aggregates
            • User-Defined Functions
            • Distributed Compute
            • Concurrency
            • Parallelism
        • Storage Format Spec
      • Tutorials
        • Basics
          • Basic Dense Array
          • Basic Sparse Array
          • Array Metadata
          • Compression
          • Encryption
          • Data Layout
          • Tile Filters
          • Datetimes
          • Multiple Attributes
          • Variable-Length Attributes
          • String Dimensions
          • Nullable Attributes
          • Multi-Range Reads
          • Query Conditions
          • Aggregates
          • Deletions
          • Catching Errors
          • Configuration
          • Basic S3 Example
          • Basic TileDB Cloud
          • fromDataFrame
          • Palmer Penguins
        • Advanced
          • Schema Evolution
          • Advanced Writes
            • Write at a Timestamp
            • Get Fragment Info
            • Consolidation
              • Fragments
              • Fragment List
              • Consolidation Plan
              • Commits
              • Fragment Metadata
              • Array Metadata
            • Vacuuming
              • Fragments
              • Commits
              • Fragment Metadata
              • Array Metadata
          • Advanced Reads
            • Get Fragment Info
            • Time Traveling
              • Introduction
              • Fragments
              • Array Metadata
              • Schema Evolution
          • Array Upgrade
          • Backends
            • Amazon S3
            • Azure Blob Storage
            • Google Cloud Storage
            • MinIO
            • Lustre
          • Virtual Filesystem
          • User-Defined Functions
          • Distributed Compute
          • Result Estimation
          • Incomplete Queries
        • Management
          • Array Schema
          • Groups
          • Object Management
        • Performance
          • Summary of Factors
          • Dense vs. Sparse
          • Dimensions vs. Attributes
          • Compression
          • Tiling and Data Layout
          • Tuning Writes
          • Tuning Reads
      • API Reference
    • Tables
      • Introduction
      • Quickstart
      • Foundation
        • Data Model
        • Key Concepts
          • Indexes
          • Columnar Storage
          • Compression
          • Data Manipulation
          • Optimize Tables
          • ACID
          • Serverless SQL
          • SQL Connectors
          • Dataframes
          • CSV Ingestion
      • Tutorials
        • Basics
          • Ingestion with SQL
          • CSV Ingestion
          • Basic S3 Example
          • Running Locally
        • Advanced
          • Scalable Ingestion
          • Scalable Queries
      • API Reference
    • AI & ML
      • Vector Search
        • Introduction
        • Quickstart
        • Foundation
          • Data Model
          • Key Concepts
            • Vector Search
            • Vector Databases
            • Algorithms
            • Distance Metrics
            • Updates
            • Deployment Methods
            • Architecture
            • Distributed Compute
          • Storage Format Spec
        • Tutorials
          • Basics
            • Ingestion & Querying
            • Updates
            • Deletions
            • Basic S3 Example
            • Running Locally
          • Advanced
            • Versioning
            • Time Traveling
            • Consolidation
            • Distributed Compute
            • RAG LLM
            • LLM Memory
            • File Search
            • Image Search
            • Protein Search
          • Performance
        • API Reference
      • ML Models
        • Introduction
        • Quickstart
        • Foundation
          • Basics
          • Storage
          • Cloud Execution
          • Why TileDB for Machine Learning
        • Tutorials
          • Ingestion
            • Data Ingestion
              • Dense Datasets
              • Sparse Datasets
            • ML Model Ingestion
          • Management
            • Array Schema
            • Machine Learning: Groups
            • Time Traveling
    • Life Sciences
      • Single-cell
        • Introduction
        • Quickstart
        • Foundation
          • Data Model
          • Key Concepts
            • Data Structures
            • Use of Apache Arrow
            • Join IDs
            • State Management
            • TileDB Cloud URIs
          • SOMA API Specification
        • Tutorials
          • Data Ingestion
          • Bulk Ingestion Tutorial
          • Data Access
          • Distributed Compute
          • Basic S3 Example
          • Multi-Experiment Queries
          • Appending Data to a SOMA Experiment
          • Add New Measurements
          • SQL Queries
          • Running Locally
          • Shapes in TileDB-SOMA
          • Drug Discovery App
        • Spatial
          • Introduction
          • Foundation
            • Spatial Data Model
            • Data Structures
          • Tutorials
            • Spatial Data Ingestion
            • Access Spatial Data
            • Manage Coordinate Spaces
        • API Reference
      • Population Genomics
        • Introduction
        • Quickstart
        • Foundation
          • Data Model
          • Key Concepts
            • The N+1 Problem
            • Architecture
            • Arrays
            • Ingestion
            • Reads
            • Variant Statistics
            • Annotations
            • User-Defined Functions
            • Tables and SQL
            • Distributed Compute
          • Storage Format Spec
        • Tutorials
          • Basics
            • Basic Ingestion
            • Basic Queries
            • Export to VCF
            • Add New Samples
            • Deleting Samples
            • Basic S3 Example
            • Basic TileDB Cloud
          • Advanced
            • Scalable Ingestion
            • Scalable Queries
            • Query Transforms
            • Handling Large Queries
            • Annotations
              • Finding Annotations
              • Embedded Annotations
              • External Annotations
              • Annotation VCFs
              • Ingesting Annotations
            • Variant Statistics
            • Tables and SQL
            • User-Defined Functions
            • Sample Metadata
            • Split VCF
          • Performance
        • API Reference
          • Command Line Interface
          • Python API
          • Cloud API
      • Biomedical Imaging
        • Introduction
        • Foundation
          • Data Model
          • Key Concepts
            • Arrays
            • Ingestion
            • Reads
            • User Defined Functions
          • Storage Format Spec
        • Quickstart
        • Tutorials
          • Basics
            • Ingestion
            • Read
              • OpenSlide
              • TileDB-Py
          • Advanced
            • Batched Ingestion
            • Chunked Ingestion
            • Machine Learning
              • PyTorch
            • Napari
    • Files
  • API Reference
  • Self-Hosting
    • Installation
    • Upgrades
    • Administrative Tasks
    • Image Customization
      • Customize User-Defined Function Images
      • AWS ECR Container Registry
      • Customize Jupyter Notebook Images
    • Single Sign-On
      • Configure Single Sign-On
      • OpenID Connect
      • Okta SCIM
      • Microsoft Entra
  • Glossary

On this page

  • Setup
  • Ingest Samples
  • Delete Samples
  • Clean up
  1. Structure
  2. Life Sciences
  3. Population Genomics
  4. Tutorials
  5. Basics
  6. Deleting Samples

Deleting Samples

life sciences
genomics (vcf)
tutorials
deletions
Learn how to delete samples from a TileDB-VCF dataset.
How to run this tutorial

You can run this tutorial in two ways:

  1. Locally on your machine.
  2. On TileDB Cloud.

However, since TileDB Cloud has a free tier, we strongly recommend that you sign up and run everything there, as that requires no installations or deployment.

This tutorial guides you through a short example of deleting samples from a TileDB-VCF dataset. Since deleting samples requires a dataset containing samples, some steps are repeated from the Basic Ingestion tutorial.

Setup

First, import the necessary libraries, set the TileDB-VCF dataset URI (i.e., its path, which in this tutorial will be on local storage), and delete any previously created datasets with the same name.

  • Python
import os.path
import shutil

import tiledb
import tiledbvcf

# Print library versions
print("TileDB core version: {}".format(tiledb.libtiledb.version()))
print("TileDB-Py version: {}".format(tiledb.version()))
print("TileDB-VCF version: {}".format(tiledbvcf.version))

# Set VCF dataset URI
vcf_uri = os.path.expanduser("~/deleting_samples")

# Clean up VCF dataset if it already exists
if os.path.exists(vcf_uri):
    shutil.rmtree(vcf_uri)
TileDB core version: (2, 24, 2)
TileDB-Py version: (0, 30, 2)
TileDB-VCF version: 0.33.2

Ingest Samples

Next, create a TileDB-VCF dataset and ingest some samples into it.

  • Python
# Specify the samples to be ingested
vcf_bucket = "s3://tiledb-inc-demo-data/examples/notebooks/vcfs/1kg-dragen"
samples_to_ingest = ["HG00096_chr21.gvcf.gz", "HG00097_chr21.gvcf.gz"]
sample_uris = [f"{vcf_bucket}/{s}" for s in samples_to_ingest]

# Open a VCF dataset in write mode
ds = tiledbvcf.Dataset(uri=vcf_uri, mode="w")

# Create empty VCF dataset
ds.create_dataset()

# Ingest samples
ds.ingest_samples(sample_uris=sample_uris)

Print a list of samples in the dataset and read some data to show the state of the dataset before deleting samples.

  • Python
# Open the Dataset in read mode
ds = tiledbvcf.Dataset(uri=vcf_uri, mode="r")

# Print a list of samples in the dataset
print("Samples in the dataset:", ds.samples())

# Read a chromosome region, and subset on samples and attributes
df = ds.read(
    regions=["chr21:8220186-8405573"],
    samples=["HG00096", "HG00097"],
    attrs=["sample_name", "contig", "pos_start", "pos_end", "alleles", "fmt_GT"],
)
df
Samples in the dataset: ['HG00096', 'HG00097']
sample_name contig pos_start pos_end alleles fmt_GT
0 HG00096 chr21 8220186 8220206 [TCTCCCTCCCTCCCTCCCTCC, T, TCTCC, TCTCCCTCC, T... [0, 1]
1 HG00097 chr21 8220186 8220194 [TCTCCCTCC, T, TCTCC, CCTCCCTCC, <NON_REF>] [1, 2]
2 HG00096 chr21 8220187 8220208 [C, <NON_REF>] [-1, -1]
3 HG00097 chr21 8220187 8220198 [C, <NON_REF>] [-1, -1]
4 HG00097 chr21 8220199 8220199 [C, <NON_REF>] [0, 0]
... ... ... ... ... ... ...
7337 HG00097 chr21 8405412 8405523 [T, <NON_REF>] [0, 0]
7338 HG00096 chr21 8405524 8405572 [C, <NON_REF>] [0, 0]
7339 HG00097 chr21 8405524 8405572 [C, <NON_REF>] [0, 0]
7340 HG00096 chr21 8405573 8405579 [ATGTGTG, ATGTG, A, ATG, ATGTGTGTG, <NON_REF>] [0, 1]
7341 HG00097 chr21 8405573 8405579 [ATGTGTG, ATG, ATGTG, A, ATGTGTGTGTGTG, ATGTAT... [0, 1]

7342 rows × 6 columns

Delete Samples

To delete a sample from the VCF dataset, provide the dataset URI and sample name to the delete command of the TileDB-VCF CLI.

  • Python
sample_to_delete = "HG00096"

!tiledbvcf delete --uri {vcf_uri} --sample-names {sample_to_delete}

Print a list of samples in the dataset and read some data to show the state of the dataset after deleting samples.

  • Python
# Open the Dataset in read mode
ds = tiledbvcf.Dataset(uri=vcf_uri, mode="r")

# Print a list of samples in the dataset
print("Samples in the dataset:", ds.samples())

# Read a chromosome region, and subset on samples and attributes
df = ds.read(
    regions=["chr21:8220186-8405573"],
    samples=["HG00096", "HG00097"],
    attrs=["sample_name", "contig", "pos_start", "pos_end", "alleles", "fmt_GT"],
)
df
Samples in the dataset: ['HG00097']
sample_name contig pos_start pos_end alleles fmt_GT
0 HG00097 chr21 8220186 8220194 [TCTCCCTCC, T, TCTCC, CCTCCCTCC, <NON_REF>] [1, 2]
1 HG00097 chr21 8220187 8220198 [C, <NON_REF>] [-1, -1]
2 HG00097 chr21 8220199 8220199 [C, <NON_REF>] [0, 0]
3 HG00097 chr21 8220200 8220200 [T, <NON_REF>] [0, 0]
4 HG00097 chr21 8220201 8220201 [C, <NON_REF>] [0, 0]
... ... ... ... ... ... ...
3873 HG00097 chr21 8405369 8405369 [C, <NON_REF>] [0, 0]
3874 HG00097 chr21 8405370 8405411 [T, <NON_REF>] [0, 0]
3875 HG00097 chr21 8405412 8405523 [T, <NON_REF>] [0, 0]
3876 HG00097 chr21 8405524 8405572 [C, <NON_REF>] [0, 0]
3877 HG00097 chr21 8405573 8405579 [ATGTGTG, ATG, ATGTG, A, ATGTGTGTGTGTG, ATGTAT... [0, 1]

3878 rows × 6 columns

Clean up

Clean up the created TileDB-VCF dataset.

  • Python
# Clean up VCF dataset if it already exists
if os.path.exists(vcf_uri):
    shutil.rmtree(vcf_uri)
Add New Samples
Basic S3 Example