1. Structure
  2. Life Sciences
  3. Population Genomics
  4. Tutorials
  5. Basics
  6. Basic Ingestion
  • Home
  • What is TileDB?
  • Get Started
  • Explore Content
  • Accounts
    • Individual Accounts
      • Apply for the Free Tier
      • Profile
        • Overview
        • Cloud Credentials
        • Storage Paths
        • REST API Tokens
        • Credits
    • Organization Admins
      • Create an Organization
      • Profile
        • Overview
        • Members
        • Cloud Credentials
        • Storage Paths
        • Billing
      • API Tokens
    • Organization Members
      • Organization Invitations
      • Profile
        • Overview
        • Members
        • Cloud Credentials
        • Storage Paths
        • Billing
      • API Tokens
  • Catalog
    • Introduction
    • Data
      • Arrays
      • Tables
      • Single-Cell (SOMA)
      • Genomics (VCF)
      • Biomedical Imaging
      • Vector Search
      • Files
    • Code
      • Notebooks
      • Dashboards
      • User-Defined Functions
      • Task Graphs
      • ML Models
    • Groups
    • Marketplace
    • Search
  • Collaborate
    • Introduction
    • Organizations
    • Access Control
      • Introduction
      • Share Assets
      • Asset Permissions
      • Public Assets
    • Logging
    • Marketplace
  • Analyze
    • Introduction
    • Slice Data
    • Multi-Region Redirection
    • Notebooks
      • Launch a Notebook
      • Usage
      • Widgets
      • Notebook Image Dependencies
    • Dashboards
      • Dashboards
      • Streamlit
    • Preview
    • User-Defined Functions
    • Task Graphs
    • Serverless SQL
    • Monitor
      • Task Log
      • Task Graph Log
  • Scale
    • Introduction
    • Task Graphs
    • API Usage
  • Structure
    • Why Structure Is Important
    • Arrays
      • Introduction
      • Quickstart
      • Foundation
        • Array Data Model
        • Key Concepts
          • Storage
            • Arrays
            • Dimensions
            • Attributes
            • Cells
            • Domain
            • Tiles
            • Data Layout
            • Compression
            • Encryption
            • Tile Filters
            • Array Schema
            • Schema Evolution
            • Fragments
            • Fragment Metadata
            • Commits
            • Indexing
            • Array Metadata
            • Datetimes
            • Groups
            • Object Stores
          • Compute
            • Writes
            • Deletions
            • Consolidation
            • Vacuuming
            • Time Traveling
            • Reads
            • Query Conditions
            • Aggregates
            • User-Defined Functions
            • Distributed Compute
            • Concurrency
            • Parallelism
        • Storage Format Spec
      • Tutorials
        • Basics
          • Basic Dense Array
          • Basic Sparse Array
          • Array Metadata
          • Compression
          • Encryption
          • Data Layout
          • Tile Filters
          • Datetimes
          • Multiple Attributes
          • Variable-Length Attributes
          • String Dimensions
          • Nullable Attributes
          • Multi-Range Reads
          • Query Conditions
          • Aggregates
          • Deletions
          • Catching Errors
          • Configuration
          • Basic S3 Example
          • Basic TileDB Cloud
          • fromDataFrame
          • Palmer Penguins
        • Advanced
          • Schema Evolution
          • Advanced Writes
            • Write at a Timestamp
            • Get Fragment Info
            • Consolidation
              • Fragments
              • Fragment List
              • Consolidation Plan
              • Commits
              • Fragment Metadata
              • Array Metadata
            • Vacuuming
              • Fragments
              • Commits
              • Fragment Metadata
              • Array Metadata
          • Advanced Reads
            • Get Fragment Info
            • Time Traveling
              • Introduction
              • Fragments
              • Array Metadata
              • Schema Evolution
          • Array Upgrade
          • Backends
            • Amazon S3
            • Azure Blob Storage
            • Google Cloud Storage
            • MinIO
            • Lustre
          • Virtual Filesystem
          • User-Defined Functions
          • Distributed Compute
          • Result Estimation
          • Incomplete Queries
        • Management
          • Array Schema
          • Groups
          • Object Management
        • Performance
          • Summary of Factors
          • Dense vs. Sparse
          • Dimensions vs. Attributes
          • Compression
          • Tiling and Data Layout
          • Tuning Writes
          • Tuning Reads
      • API Reference
    • Tables
      • Introduction
      • Quickstart
      • Foundation
        • Data Model
        • Key Concepts
          • Indexes
          • Columnar Storage
          • Compression
          • Data Manipulation
          • Optimize Tables
          • ACID
          • Serverless SQL
          • SQL Connectors
          • Dataframes
          • CSV Ingestion
      • Tutorials
        • Basics
          • Ingestion with SQL
          • CSV Ingestion
          • Basic S3 Example
          • Running Locally
        • Advanced
          • Scalable Ingestion
          • Scalable Queries
      • API Reference
    • AI & ML
      • Vector Search
        • Introduction
        • Quickstart
        • Foundation
          • Data Model
          • Key Concepts
            • Vector Search
            • Vector Databases
            • Algorithms
            • Distance Metrics
            • Updates
            • Deployment Methods
            • Architecture
            • Distributed Compute
          • Storage Format Spec
        • Tutorials
          • Basics
            • Ingestion & Querying
            • Updates
            • Deletions
            • Basic S3 Example
            • Running Locally
          • Advanced
            • Versioning
            • Time Traveling
            • Consolidation
            • Distributed Compute
            • RAG LLM
            • LLM Memory
            • File Search
            • Image Search
            • Protein Search
          • Performance
        • API Reference
      • ML Models
        • Introduction
        • Quickstart
        • Foundation
          • Basics
          • Storage
          • Cloud Execution
          • Why TileDB for Machine Learning
        • Tutorials
          • Ingestion
            • Data Ingestion
              • Dense Datasets
              • Sparse Datasets
            • ML Model Ingestion
          • Management
            • Array Schema
            • Machine Learning: Groups
            • Time Traveling
    • Life Sciences
      • Single-cell
        • Introduction
        • Quickstart
        • Foundation
          • Data Model
          • Key Concepts
            • Data Structures
            • Use of Apache Arrow
            • Join IDs
            • State Management
            • TileDB Cloud URIs
          • SOMA API Specification
        • Tutorials
          • Data Ingestion
          • Bulk Ingestion Tutorial
          • Data Access
          • Distributed Compute
          • Basic S3 Example
          • Multi-Experiment Queries
          • Appending Data to a SOMA Experiment
          • Add New Measurements
          • SQL Queries
          • Running Locally
          • Shapes in TileDB-SOMA
          • Drug Discovery App
        • Spatial
          • Introduction
          • Foundation
            • Spatial Data Model
            • Data Structures
          • Tutorials
            • Spatial Data Ingestion
            • Access Spatial Data
            • Manage Coordinate Spaces
        • API Reference
      • Population Genomics
        • Introduction
        • Quickstart
        • Foundation
          • Data Model
          • Key Concepts
            • The N+1 Problem
            • Architecture
            • Arrays
            • Ingestion
            • Reads
            • Variant Statistics
            • Annotations
            • User-Defined Functions
            • Tables and SQL
            • Distributed Compute
          • Storage Format Spec
        • Tutorials
          • Basics
            • Basic Ingestion
            • Basic Queries
            • Export to VCF
            • Add New Samples
            • Deleting Samples
            • Basic S3 Example
            • Basic TileDB Cloud
          • Advanced
            • Scalable Ingestion
            • Scalable Queries
            • Query Transforms
            • Handling Large Queries
            • Annotations
              • Finding Annotations
              • Embedded Annotations
              • External Annotations
              • Annotation VCFs
              • Ingesting Annotations
            • Variant Statistics
            • Tables and SQL
            • User-Defined Functions
            • Sample Metadata
            • Split VCF
          • Performance
        • API Reference
          • Command Line Interface
          • Python API
          • Cloud API
      • Biomedical Imaging
        • Introduction
        • Foundation
          • Data Model
          • Key Concepts
            • Arrays
            • Ingestion
            • Reads
            • User Defined Functions
          • Storage Format Spec
        • Quickstart
        • Tutorials
          • Basics
            • Ingestion
            • Read
              • OpenSlide
              • TileDB-Py
          • Advanced
            • Batched Ingestion
            • Chunked Ingestion
            • Machine Learning
              • PyTorch
            • Napari
    • Files
  • API Reference
  • Self-Hosting
    • Installation
    • Upgrades
    • Administrative Tasks
    • Image Customization
      • Customize User-Defined Function Images
      • AWS ECR Container Registry
      • Customize Jupyter Notebook Images
    • Single Sign-On
      • Configure Single Sign-On
      • OpenID Connect
      • Okta SCIM
      • Microsoft Entra
  • Glossary

On this page

  • Setup
  • Default ingestion
  • Materializing INFO and FMT fields
  1. Structure
  2. Life Sciences
  3. Population Genomics
  4. Tutorials
  5. Basics
  6. Basic Ingestion

Basic Ingestion

life sciences
genomics (vcf)
tutorials
ingestion
Learn how to ingest a small batch of gVCFs using TileDB-VCF.
How to run this tutorial

You can run this tutorial in two ways:

  1. Locally on your machine.
  2. On TileDB Cloud.

However, since TileDB Cloud has a free tier, we strongly recommend that you sign up and run everything there, as that requires no installations or deployment.

This tutorial guides you through a short example of ingesting a small batch of gVCFs using TileDB-VCF. This approach is appropriate for small datasets (under 10 samples).

Setup

First, import the necessary libraries, set the TileDB-VCF dataset URI (i.e., its path, which in this tutorial will be on local storage), and delete any previously created datasets with the same name.

  • Python
import os.path
import shutil

import tiledb
import tiledbvcf

# Print library versions
print("TileDB core version: {}".format(tiledb.libtiledb.version()))
print("TileDB-Py version: {}".format(tiledb.version()))
print("TileDB-VCF version: {}".format(tiledbvcf.version))

# Set VCF dataset URI
vcf_uri = os.path.expanduser("~/basic_ingestion")

# Clean up VCF dataset if it already exists
if os.path.exists(vcf_uri):
    shutil.rmtree(vcf_uri)
TileDB core version: (2, 24, 2)
TileDB-Py version: (0, 30, 2)
TileDB-VCF version: 0.33.2

Default ingestion

Specify the samples to be ingested, which are readily available on a TileDB-owned public S3 bucket.

  • Python
vcf_bucket = "s3://tiledb-inc-demo-data/examples/notebooks/vcfs/1kg-dragen"
samples_to_ingest = [
    "HG00096_chr21.gvcf.gz",
    "HG00097_chr21.gvcf.gz",
    "HG00099_chr21.gvcf.gz",
    "HG00100_chr21.gvcf.gz",
    "HG00101_chr21.gvcf.gz",
]
sample_uris = [f"{vcf_bucket}/{s}" for s in samples_to_ingest]
sample_uris
['s3://tiledb-inc-demo-data/examples/notebooks/vcfs/1kg-dragen/HG00096_chr21.gvcf.gz',
 's3://tiledb-inc-demo-data/examples/notebooks/vcfs/1kg-dragen/HG00097_chr21.gvcf.gz',
 's3://tiledb-inc-demo-data/examples/notebooks/vcfs/1kg-dragen/HG00099_chr21.gvcf.gz',
 's3://tiledb-inc-demo-data/examples/notebooks/vcfs/1kg-dragen/HG00100_chr21.gvcf.gz',
 's3://tiledb-inc-demo-data/examples/notebooks/vcfs/1kg-dragen/HG00101_chr21.gvcf.gz']

Next, create a TileDB-VCF dataset and ingest the samples in it.

  • Python
# Open a VCF dataset in write mode
ds = tiledbvcf.Dataset(uri=vcf_uri, mode="w")

# Create empty VCF dataset
ds.create_dataset()

# Ingest samples
ds.ingest_samples(sample_uris=sample_uris)

The above will create a folder called vcf_uri in your local storage. You can see the contents of the folder running !tree {vcf_uri} in a notebook cell, and visit the Storage Format Specification section for more details on what each subfolder and file represents.

Tip

You can tweak parameters threads and total_memory_budget_mb in the ingest_samples function to fine tune ingestion performance.

Read some data to confirm that the samples were properly ingested in the dataset.

  • Python
# Open the Dataset in read mode
ds = tiledbvcf.Dataset(uri=vcf_uri, mode="r")
# Read a chromosome region, and subset on samples and attributes
df = ds.read(
    regions=["chr21:8220186-8405573"],
    samples=["HG00096", "HG00097"],
    attrs=["sample_name", "contig", "pos_start", "pos_end", "alleles", "fmt_GT"],
)
df
sample_name contig pos_start pos_end alleles fmt_GT
0 HG00096 chr21 8220186 8220206 [TCTCCCTCCCTCCCTCCCTCC, T, TCTCC, TCTCCCTCC, T... [0, 1]
1 HG00097 chr21 8220186 8220194 [TCTCCCTCC, T, TCTCC, CCTCCCTCC, <NON_REF>] [1, 2]
2 HG00096 chr21 8220187 8220208 [C, <NON_REF>] [-1, -1]
3 HG00097 chr21 8220187 8220198 [C, <NON_REF>] [-1, -1]
4 HG00097 chr21 8220199 8220199 [C, <NON_REF>] [0, 0]
... ... ... ... ... ... ...
7337 HG00097 chr21 8405412 8405523 [T, <NON_REF>] [0, 0]
7338 HG00096 chr21 8405524 8405572 [C, <NON_REF>] [0, 0]
7339 HG00097 chr21 8405524 8405572 [C, <NON_REF>] [0, 0]
7340 HG00096 chr21 8405573 8405579 [ATGTGTG, ATGTG, A, ATG, ATGTGTGTG, <NON_REF>] [0, 1]
7341 HG00097 chr21 8405573 8405579 [ATGTGTG, ATG, ATGTG, A, ATGTGTGTGTGTG, ATGTAT... [0, 1]

7342 rows × 6 columns

TileDB-VCF allows you to see all the queryable fields (i.e., attributes) in the dataset.

  • Python
# Show all the attributes of the dataset
ds.attributes()  # same as ds.attributes("all")
['alleles',
 'contig',
 'filters',
 'fmt',
 'fmt_AD',
 'fmt_AF',
 'fmt_DP',
 'fmt_F1R2',
 'fmt_F2R1',
 'fmt_GP',
 'fmt_GQ',
 'fmt_GT',
 'fmt_ICNT',
 'fmt_MB',
 'fmt_MIN_DP',
 'fmt_PL',
 'fmt_PRI',
 'fmt_PS',
 'fmt_SB',
 'fmt_SPL',
 'fmt_SQ',
 'id',
 'info',
 'info_DB',
 'info_DP',
 'info_END',
 'info_FS',
 'info_FractionInformativeReads',
 'info_LOD',
 'info_MQ',
 'info_MQRankSum',
 'info_QD',
 'info_R2_5P_bias',
 'info_ReadPosRankSum',
 'info_SOR',
 'pos_end',
 'pos_start',
 'qual',
 'query_bed_end',
 'query_bed_line',
 'query_bed_start',
 'sample_name']

You can also see only the attributes in the INFO and FMT VCF fields.

  • Python
# Show the info attributes of the dataset
ds.attributes("info")
['info_DB',
 'info_DP',
 'info_END',
 'info_FS',
 'info_FractionInformativeReads',
 'info_LOD',
 'info_MQ',
 'info_MQRankSum',
 'info_QD',
 'info_R2_5P_bias',
 'info_ReadPosRankSum',
 'info_SOR']
# Show the fmt attributes of the dataset
ds.attributes("fmt")
['fmt_AD',
 'fmt_AF',
 'fmt_DP',
 'fmt_F1R2',
 'fmt_F2R1',
 'fmt_GP',
 'fmt_GQ',
 'fmt_GT',
 'fmt_ICNT',
 'fmt_MB',
 'fmt_MIN_DP',
 'fmt_PL',
 'fmt_PRI',
 'fmt_PS',
 'fmt_SB',
 'fmt_SPL',
 'fmt_SQ']
Note

Despite the fact that .attributes("all") shows all the queryable fields, not all of the INFO and FMT fields are materialized as separate array attributes by default in TileDB-VCF. This may have an impact on query performance. As a rule of thumb, performance is better when a VCF field is materialized as an array attribute in TileDB-VCF.

To see the materialized VCF fields, you can run .attributes("builtin").

  • Python
# Show the materialized attributes of the dataset
ds.attributes("builtin")
['alleles',
 'contig',
 'filters',
 'fmt',
 'fmt_GT',
 'id',
 'info',
 'pos_end',
 'pos_start',
 'qual',
 'query_bed_end',
 'query_bed_line',
 'query_bed_start',
 'sample_name']

The next subsection explains how you can control which INFO and FMT fields to materialize as separate attributes.

Make sure to clean up the created dataset before proceeding.

  • Python
# Clean up VCF dataset if it already exists
if os.path.exists(vcf_uri):
    shutil.rmtree(vcf_uri)

Materializing INFO and FMT fields

In order to boost performance of queries performed on certain INFO or FMT fields, you may want to explicitly materialize them as separate attributes in the underlying arrays that TileDB-VCF creates. This can help with both query time, as well as compression, as TileDB adopts a “columnar” format that is more storage-effective when values across a field are stored all together in a separate storage place (e.g., a separate file).

You can explicitly materialize INFO or FMT fields as follows.

  • Python
# Open a VCF dataset in write mode
ds = tiledbvcf.Dataset(uri=vcf_uri, mode="w")

# Create empty VCF dataset
ds.create_dataset(extra_attrs=["fmt_AD", "info_DB"])

# Ingest samples
ds.ingest_samples(sample_uris=sample_uris)

You can see that fields fmt_AD and info_DB are both materialized, by opening the dataset in read mode and showing the builtin attributes.

  • Python
# Open the Dataset in read mode
ds = tiledbvcf.Dataset(uri=vcf_uri, mode="r")
# Show the materialized attributes of the dataset
ds.attributes("builtin")
['alleles',
 'contig',
 'filters',
 'fmt',
 'fmt_AD',
 'id',
 'info',
 'info_DB',
 'pos_end',
 'pos_start',
 'qual',
 'query_bed_end',
 'query_bed_line',
 'query_bed_start',
 'sample_name']

Clean up the created TileDB-VCF dataset.

  • Python
# Clean up VCF dataset if it already exists
if os.path.exists(vcf_uri):
    shutil.rmtree(vcf_uri)
Basics
Basic Queries