1. Structure
  2. AI & ML
  3. Vector Search
  4. Tutorials
  5. Advanced
  6. LLM Memory
  • Home
  • What is TileDB?
  • Get Started
  • Explore Content
  • Accounts
    • Individual Accounts
      • Apply for the Free Tier
      • Profile
        • Overview
        • Cloud Credentials
        • Storage Paths
        • REST API Tokens
        • Credits
    • Organization Admins
      • Create an Organization
      • Profile
        • Overview
        • Members
        • Cloud Credentials
        • Storage Paths
        • Billing
      • API Tokens
    • Organization Members
      • Organization Invitations
      • Profile
        • Overview
        • Members
        • Cloud Credentials
        • Storage Paths
        • Billing
      • API Tokens
  • Catalog
    • Introduction
    • Data
      • Arrays
      • Tables
      • Single-Cell (SOMA)
      • Genomics (VCF)
      • Biomedical Imaging
      • Vector Search
      • Files
    • Code
      • Notebooks
      • Dashboards
      • User-Defined Functions
      • Task Graphs
      • ML Models
    • Groups
    • Marketplace
    • Search
  • Collaborate
    • Introduction
    • Organizations
    • Access Control
      • Introduction
      • Share Assets
      • Asset Permissions
      • Public Assets
    • Logging
    • Marketplace
  • Analyze
    • Introduction
    • Slice Data
    • Multi-Region Redirection
    • Notebooks
      • Launch a Notebook
      • Usage
      • Widgets
      • Notebook Image Dependencies
    • Dashboards
      • Dashboards
      • Streamlit
    • Preview
    • User-Defined Functions
    • Task Graphs
    • Serverless SQL
    • Monitor
      • Task Log
      • Task Graph Log
  • Scale
    • Introduction
    • Task Graphs
    • API Usage
  • Structure
    • Why Structure Is Important
    • Arrays
      • Introduction
      • Quickstart
      • Foundation
        • Array Data Model
        • Key Concepts
          • Storage
            • Arrays
            • Dimensions
            • Attributes
            • Cells
            • Domain
            • Tiles
            • Data Layout
            • Compression
            • Encryption
            • Tile Filters
            • Array Schema
            • Schema Evolution
            • Fragments
            • Fragment Metadata
            • Commits
            • Indexing
            • Array Metadata
            • Datetimes
            • Groups
            • Object Stores
          • Compute
            • Writes
            • Deletions
            • Consolidation
            • Vacuuming
            • Time Traveling
            • Reads
            • Query Conditions
            • Aggregates
            • User-Defined Functions
            • Distributed Compute
            • Concurrency
            • Parallelism
        • Storage Format Spec
      • Tutorials
        • Basics
          • Basic Dense Array
          • Basic Sparse Array
          • Array Metadata
          • Compression
          • Encryption
          • Data Layout
          • Tile Filters
          • Datetimes
          • Multiple Attributes
          • Variable-Length Attributes
          • String Dimensions
          • Nullable Attributes
          • Multi-Range Reads
          • Query Conditions
          • Aggregates
          • Deletions
          • Catching Errors
          • Configuration
          • Basic S3 Example
          • Basic TileDB Cloud
          • fromDataFrame
          • Palmer Penguins
        • Advanced
          • Schema Evolution
          • Advanced Writes
            • Write at a Timestamp
            • Get Fragment Info
            • Consolidation
              • Fragments
              • Fragment List
              • Consolidation Plan
              • Commits
              • Fragment Metadata
              • Array Metadata
            • Vacuuming
              • Fragments
              • Commits
              • Fragment Metadata
              • Array Metadata
          • Advanced Reads
            • Get Fragment Info
            • Time Traveling
              • Introduction
              • Fragments
              • Array Metadata
              • Schema Evolution
          • Array Upgrade
          • Backends
            • Amazon S3
            • Azure Blob Storage
            • Google Cloud Storage
            • MinIO
            • Lustre
          • Virtual Filesystem
          • User-Defined Functions
          • Distributed Compute
          • Result Estimation
          • Incomplete Queries
        • Management
          • Array Schema
          • Groups
          • Object Management
        • Performance
          • Summary of Factors
          • Dense vs. Sparse
          • Dimensions vs. Attributes
          • Compression
          • Tiling and Data Layout
          • Tuning Writes
          • Tuning Reads
      • API Reference
    • Tables
      • Introduction
      • Quickstart
      • Foundation
        • Data Model
        • Key Concepts
          • Indexes
          • Columnar Storage
          • Compression
          • Data Manipulation
          • Optimize Tables
          • ACID
          • Serverless SQL
          • SQL Connectors
          • Dataframes
          • CSV Ingestion
      • Tutorials
        • Basics
          • Ingestion with SQL
          • CSV Ingestion
          • Basic S3 Example
          • Running Locally
        • Advanced
          • Scalable Ingestion
          • Scalable Queries
      • API Reference
    • AI & ML
      • Vector Search
        • Introduction
        • Quickstart
        • Foundation
          • Data Model
          • Key Concepts
            • Vector Search
            • Vector Databases
            • Algorithms
            • Distance Metrics
            • Updates
            • Deployment Methods
            • Architecture
            • Distributed Compute
          • Storage Format Spec
        • Tutorials
          • Basics
            • Ingestion & Querying
            • Updates
            • Deletions
            • Basic S3 Example
            • Running Locally
          • Advanced
            • Versioning
            • Time Traveling
            • Consolidation
            • Distributed Compute
            • RAG LLM
            • LLM Memory
            • File Search
            • Image Search
            • Protein Search
          • Performance
        • API Reference
      • ML Models
        • Introduction
        • Quickstart
        • Foundation
          • Basics
          • Storage
          • Cloud Execution
          • Why TileDB for Machine Learning
        • Tutorials
          • Ingestion
            • Data Ingestion
              • Dense Datasets
              • Sparse Datasets
            • ML Model Ingestion
          • Management
            • Array Schema
            • Machine Learning: Groups
            • Time Traveling
    • Life Sciences
      • Single-cell
        • Introduction
        • Quickstart
        • Foundation
          • Data Model
          • Key Concepts
            • Data Structures
            • Use of Apache Arrow
            • Join IDs
            • State Management
            • TileDB Cloud URIs
          • SOMA API Specification
        • Tutorials
          • Data Ingestion
          • Bulk Ingestion Tutorial
          • Data Access
          • Distributed Compute
          • Basic S3 Example
          • Multi-Experiment Queries
          • Appending Data to a SOMA Experiment
          • Add New Measurements
          • SQL Queries
          • Running Locally
          • Shapes in TileDB-SOMA
          • Drug Discovery App
        • Spatial
          • Introduction
          • Foundation
            • Spatial Data Model
            • Data Structures
          • Tutorials
            • Spatial Data Ingestion
            • Access Spatial Data
            • Manage Coordinate Spaces
        • API Reference
      • Population Genomics
        • Introduction
        • Quickstart
        • Foundation
          • Data Model
          • Key Concepts
            • The N+1 Problem
            • Architecture
            • Arrays
            • Ingestion
            • Reads
            • Variant Statistics
            • Annotations
            • User-Defined Functions
            • Tables and SQL
            • Distributed Compute
          • Storage Format Spec
        • Tutorials
          • Basics
            • Basic Ingestion
            • Basic Queries
            • Export to VCF
            • Add New Samples
            • Deleting Samples
            • Basic S3 Example
            • Basic TileDB Cloud
          • Advanced
            • Scalable Ingestion
            • Scalable Queries
            • Query Transforms
            • Handling Large Queries
            • Annotations
              • Finding Annotations
              • Embedded Annotations
              • External Annotations
              • Annotation VCFs
              • Ingesting Annotations
            • Variant Statistics
            • Tables and SQL
            • User-Defined Functions
            • Sample Metadata
            • Split VCF
          • Performance
        • API Reference
          • Command Line Interface
          • Python API
          • Cloud API
      • Biomedical Imaging
        • Introduction
        • Foundation
          • Data Model
          • Key Concepts
            • Arrays
            • Ingestion
            • Reads
            • User Defined Functions
          • Storage Format Spec
        • Quickstart
        • Tutorials
          • Basics
            • Ingestion
            • Read
              • OpenSlide
              • TileDB-Py
          • Advanced
            • Batched Ingestion
            • Chunked Ingestion
            • Machine Learning
              • PyTorch
            • Napari
    • Files
  • API Reference
  • Self-Hosting
    • Installation
    • Upgrades
    • Administrative Tasks
    • Image Customization
      • Customize User-Defined Function Images
      • AWS ECR Container Registry
      • Customize Jupyter Notebook Images
    • Single Sign-On
      • Configure Single Sign-On
      • OpenID Connect
      • Okta SCIM
      • Microsoft Entra
  • Glossary

On this page

  • Set up
  • Set up history
  • Chat with memory
  • Clean up
  1. Structure
  2. AI & ML
  3. Vector Search
  4. Tutorials
  5. Advanced
  6. LLM Memory

LLM Memory

ai/ml
vector search
tutorials
conversational memory
Learn how to augment LLMs with conversational memory using a TileDB-Vector-Search index on the conversation history.
How to run this tutorial

We recommend running this tutorial, as well as the other various tutorials in the Tutorials section, inside TileDB Cloud. This will allow you to quickly experiment avoiding all the installation, deployment, and configuration hassles. Sign up for the free tier, spin up a TileDB Cloud notebook with a Python kernel, and follow the tutorial instructions. If you wish to learn how to run tutorials locally on your machine, read the Tutorials: Running Locally tutorial.

In this tutorial, you will learn how to use TileDB-Vector-Search to store the interaction history of a user with an LLM. This allows an LLM to remember past conversations and user preferences, and answer questions about them appropriately.

Set up

To be able to run this tutorial, you will need an OpenAI API key. In addition, if you wish to use your local machine instead of a TileDB Cloud notebook, you will need to install the following:

  • Conda
  • Pip
conda install -c conda-forge langchain==0.0.331 openai==0.28.1 tiktoken
pip install langchain==0.0.331 openai==0.28.1 tiktoken

Import the necessary libraries, set the URI you will use throughout the tutorial, and clean up any previously generated data.

import os
import shutil

import numpy as np
from langchain.chains import ConversationChain
from langchain.chat_models import ChatOpenAI
from langchain.embeddings import OpenAIEmbeddings
from langchain.memory import VectorStoreRetrieverMemory
from langchain.vectorstores.tiledb import TileDB

# URI to be used throughout the tutorial
index_uri = "memory_index"

# Clean up past data
if os.path.exists(index_uri):
    shutil.rmtree(index_uri)

Set up history

Next, create a vector index that will hold the LLM history, and add some past conversations to it.

# Create a TileDB vector index to store the conversation history
embedding_size = 1536  # Dimensions of the OpenAIEmbeddings
TileDB.create(
    index_uri=index_uri,
    index_type="IVF_FLAT",
    dimensions=embedding_size,
    vector_type=np.float32,
)
vectorstore = TileDB.load(
    index_uri=index_uri,
    embedding=OpenAIEmbeddings(),
    allow_dangerous_deserialization=True,
)
retriever = vectorstore.as_retriever(search_kwargs=dict(k=2))
memory = VectorStoreRetrieverMemory(retriever=retriever)

# Add some conversation history
memory.save_context({"input": "My name is Nikos"}, {"output": "Hello Nikos"})
memory.save_context(
    {"input": "My favorite food is pizza"}, {"output": "This is a classic choice"}
)
memory.save_context(
    {"input": "Blue is the best color"}, {"output": "Green is also nice"}
)

Chat with memory

Now, initialize ChatGPT 3.5 Turbo passing the vector index as its memory, and ask some questions on the past history you created above. Observe that ChatGPT is able to successfully answer those questions, properly taking into account the history.

llm = ChatOpenAI(
    model="gpt-3.5-turbo",
)
qa = ConversationChain(llm=llm, memory=memory)

question = "What is my name?"
print(f"User: {question}")
print(f"AI: {qa.predict(input=question)}\n")

question = "Are there any football teams with my favorite color in England?"
print(f"User: {question}")
print(f"AI: {qa.predict(input=question)}\n")

question = "Please suggest a recipe for my favorite food"
print(f"User: {question}")
print(f"AI: {qa.predict(input=question)}\n")
User: What is my name?
AI: Your name is Nikos.

User: Are there any football teams with my favorite color in England?
AI: Yes, there are football teams in England that have blue as their primary color. Some examples include Chelsea FC, Everton FC, and Manchester City FC.

User: Please suggest a recipe for my favorite food
AI: There are so many delicious pizza recipes out there! One popular option is a classic Margherita pizza with fresh basil, mozzarella cheese, and tomato sauce on a thin crust. Or you could try a BBQ chicken pizza with barbecue sauce, chicken, red onions, and cilantro. Another tasty choice is a veggie supreme pizza with bell peppers, mushrooms, olives, and onions. The possibilities are endless! Let me know if you'd like more specific details on any of these recipes.

Clean up

Clean up all the generated data.

# Clean up past data
if os.path.exists(index_uri):
    shutil.rmtree(index_uri)
RAG LLM
File Search