1. Structure
  2. Life Sciences
  3. Biomedical Imaging
  4. Quickstart
  • Home
  • What is TileDB?
  • Get Started
  • Explore Content
  • Accounts
    • Individual Accounts
      • Apply for the Free Tier
      • Profile
        • Overview
        • Cloud Credentials
        • Storage Paths
        • REST API Tokens
        • Credits
    • Organization Admins
      • Create an Organization
      • Profile
        • Overview
        • Members
        • Cloud Credentials
        • Storage Paths
        • Billing
      • API Tokens
    • Organization Members
      • Organization Invitations
      • Profile
        • Overview
        • Members
        • Cloud Credentials
        • Storage Paths
        • Billing
      • API Tokens
  • Catalog
    • Introduction
    • Data
      • Arrays
      • Tables
      • Single-Cell (SOMA)
      • Genomics (VCF)
      • Biomedical Imaging
      • Vector Search
      • Files
    • Code
      • Notebooks
      • Dashboards
      • User-Defined Functions
      • Task Graphs
      • ML Models
    • Groups
    • Marketplace
    • Search
  • Collaborate
    • Introduction
    • Organizations
    • Access Control
      • Introduction
      • Share Assets
      • Asset Permissions
      • Public Assets
    • Logging
    • Marketplace
  • Analyze
    • Introduction
    • Slice Data
    • Multi-Region Redirection
    • Notebooks
      • Launch a Notebook
      • Usage
      • Widgets
      • Notebook Image Dependencies
    • Dashboards
      • Dashboards
      • Streamlit
    • Preview
    • User-Defined Functions
    • Task Graphs
    • Serverless SQL
    • Monitor
      • Task Log
      • Task Graph Log
  • Scale
    • Introduction
    • Task Graphs
    • API Usage
  • Structure
    • Why Structure Is Important
    • Arrays
      • Introduction
      • Quickstart
      • Foundation
        • Array Data Model
        • Key Concepts
          • Storage
            • Arrays
            • Dimensions
            • Attributes
            • Cells
            • Domain
            • Tiles
            • Data Layout
            • Compression
            • Encryption
            • Tile Filters
            • Array Schema
            • Schema Evolution
            • Fragments
            • Fragment Metadata
            • Commits
            • Indexing
            • Array Metadata
            • Datetimes
            • Groups
            • Object Stores
          • Compute
            • Writes
            • Deletions
            • Consolidation
            • Vacuuming
            • Time Traveling
            • Reads
            • Query Conditions
            • Aggregates
            • User-Defined Functions
            • Distributed Compute
            • Concurrency
            • Parallelism
        • Storage Format Spec
      • Tutorials
        • Basics
          • Basic Dense Array
          • Basic Sparse Array
          • Array Metadata
          • Compression
          • Encryption
          • Data Layout
          • Tile Filters
          • Datetimes
          • Multiple Attributes
          • Variable-Length Attributes
          • String Dimensions
          • Nullable Attributes
          • Multi-Range Reads
          • Query Conditions
          • Aggregates
          • Deletions
          • Catching Errors
          • Configuration
          • Basic S3 Example
          • Basic TileDB Cloud
          • fromDataFrame
          • Palmer Penguins
        • Advanced
          • Schema Evolution
          • Advanced Writes
            • Write at a Timestamp
            • Get Fragment Info
            • Consolidation
              • Fragments
              • Fragment List
              • Consolidation Plan
              • Commits
              • Fragment Metadata
              • Array Metadata
            • Vacuuming
              • Fragments
              • Commits
              • Fragment Metadata
              • Array Metadata
          • Advanced Reads
            • Get Fragment Info
            • Time Traveling
              • Introduction
              • Fragments
              • Array Metadata
              • Schema Evolution
          • Array Upgrade
          • Backends
            • Amazon S3
            • Azure Blob Storage
            • Google Cloud Storage
            • MinIO
            • Lustre
          • Virtual Filesystem
          • User-Defined Functions
          • Distributed Compute
          • Result Estimation
          • Incomplete Queries
        • Management
          • Array Schema
          • Groups
          • Object Management
        • Performance
          • Summary of Factors
          • Dense vs. Sparse
          • Dimensions vs. Attributes
          • Compression
          • Tiling and Data Layout
          • Tuning Writes
          • Tuning Reads
      • API Reference
    • Tables
      • Introduction
      • Quickstart
      • Foundation
        • Data Model
        • Key Concepts
          • Indexes
          • Columnar Storage
          • Compression
          • Data Manipulation
          • Optimize Tables
          • ACID
          • Serverless SQL
          • SQL Connectors
          • Dataframes
          • CSV Ingestion
      • Tutorials
        • Basics
          • Ingestion with SQL
          • CSV Ingestion
          • Basic S3 Example
          • Running Locally
        • Advanced
          • Scalable Ingestion
          • Scalable Queries
      • API Reference
    • AI & ML
      • Vector Search
        • Introduction
        • Quickstart
        • Foundation
          • Data Model
          • Key Concepts
            • Vector Search
            • Vector Databases
            • Algorithms
            • Distance Metrics
            • Updates
            • Deployment Methods
            • Architecture
            • Distributed Compute
          • Storage Format Spec
        • Tutorials
          • Basics
            • Ingestion & Querying
            • Updates
            • Deletions
            • Basic S3 Example
            • Running Locally
          • Advanced
            • Versioning
            • Time Traveling
            • Consolidation
            • Distributed Compute
            • RAG LLM
            • LLM Memory
            • File Search
            • Image Search
            • Protein Search
          • Performance
        • API Reference
      • ML Models
        • Introduction
        • Quickstart
        • Foundation
          • Basics
          • Storage
          • Cloud Execution
          • Why TileDB for Machine Learning
        • Tutorials
          • Ingestion
            • Data Ingestion
              • Dense Datasets
              • Sparse Datasets
            • ML Model Ingestion
          • Management
            • Array Schema
            • Machine Learning: Groups
            • Time Traveling
    • Life Sciences
      • Single-cell
        • Introduction
        • Quickstart
        • Foundation
          • Data Model
          • Key Concepts
            • Data Structures
            • Use of Apache Arrow
            • Join IDs
            • State Management
            • TileDB Cloud URIs
          • SOMA API Specification
        • Tutorials
          • Data Ingestion
          • Bulk Ingestion Tutorial
          • Data Access
          • Distributed Compute
          • Basic S3 Example
          • Multi-Experiment Queries
          • Appending Data to a SOMA Experiment
          • Add New Measurements
          • SQL Queries
          • Running Locally
          • Shapes in TileDB-SOMA
          • Drug Discovery App
        • Spatial
          • Introduction
          • Foundation
            • Spatial Data Model
            • Data Structures
          • Tutorials
            • Spatial Data Ingestion
            • Access Spatial Data
            • Manage Coordinate Spaces
        • API Reference
      • Population Genomics
        • Introduction
        • Quickstart
        • Foundation
          • Data Model
          • Key Concepts
            • The N+1 Problem
            • Architecture
            • Arrays
            • Ingestion
            • Reads
            • Variant Statistics
            • Annotations
            • User-Defined Functions
            • Tables and SQL
            • Distributed Compute
          • Storage Format Spec
        • Tutorials
          • Basics
            • Basic Ingestion
            • Basic Queries
            • Export to VCF
            • Add New Samples
            • Deleting Samples
            • Basic S3 Example
            • Basic TileDB Cloud
          • Advanced
            • Scalable Ingestion
            • Scalable Queries
            • Query Transforms
            • Handling Large Queries
            • Annotations
              • Finding Annotations
              • Embedded Annotations
              • External Annotations
              • Annotation VCFs
              • Ingesting Annotations
            • Variant Statistics
            • Tables and SQL
            • User-Defined Functions
            • Sample Metadata
            • Split VCF
          • Performance
        • API Reference
          • Command Line Interface
          • Python API
          • Cloud API
      • Biomedical Imaging
        • Introduction
        • Foundation
          • Data Model
          • Key Concepts
            • Arrays
            • Ingestion
            • Reads
            • User Defined Functions
          • Storage Format Spec
        • Quickstart
        • Tutorials
          • Basics
            • Ingestion
            • Read
              • OpenSlide
              • TileDB-Py
          • Advanced
            • Batched Ingestion
            • Chunked Ingestion
            • Machine Learning
              • PyTorch
            • Napari
    • Files
  • API Reference
  • Self-Hosting
    • Installation
    • Upgrades
    • Administrative Tasks
    • Image Customization
      • Customize User-Defined Function Images
      • AWS ECR Container Registry
      • Customize Jupyter Notebook Images
    • Single Sign-On
      • Configure Single Sign-On
      • OpenID Connect
      • Okta SCIM
      • Microsoft Entra
  • Glossary

On this page

  • Prerequisites
  • Setup
  • Ingestion
  • Read data
    • TileDB-Py API
    • OpenSlide Python API
  • Visualization
    • Export to OME formats
  • Cleanup
  1. Structure
  2. Life Sciences
  3. Biomedical Imaging
  4. Quickstart

Biomedical Imaging Quickstart

biomedical imaging
life sciences
quickstart
This tutorial covers the basics of working with histopathology images using TileDB-BioImaging.

This quickstart gives you a rapid introduction to TileDB-BioImaging and its capabilities. After completing this tutorial, you will learn how to do the following:

  • Ingest a whole-slide image into TileDB.
  • Read image data by slicing its slides.
  • Visualize the images and their slides.
  • Export the images back into other formats.

Prerequisites

Familiarize yourself with Jupyter notebooks to run data exploration and analysis efficiently. You can review Jupyter’s documentation on installing and running notebooks.

If running this tutorial locally, you’ll need to install the TileDB-BioImaging package and its dependencies. You can install them using pip:

pip install 'tiledb-bioimg[full]'

If you’re running this tutorial through a TileDB workspace, you can skip the installation step as the packages you need are already installed as part of the Genomics image.

Setup

First, create a directory to store the files for this tutorial.

Ingestion

To get started with bio-images on TileDB, import the TileDB-BioImaging package. You will then have two alternative APIs to ingest your images into TileDB.

The first option is using Converters:

  • Python
from tiledb.bioimg.converters.ome_tiff import OMETiffConverter

The second option is using Wrappers:

  • Python
from tiledb.bioimg import Converters, from_bioimg

Both of these APIs offer similar functionality, with the latter being a wrapper of the former. The package supports converters for multiple source formats, and the TileDB team is continuously adding more. The following formats are currently supported:

  • OpenSlide supported formats
  • OME-TIFF
  • OME-Zarr
  • PNG

The Converters enumeration gives a list of all the supported converters you can use for ingesting images. Each converter offers a function taking a source path and storage destination for the converted TileDB multi-resolution image group. To import and use each of the supported converters, you can choose between using each converter’s API directly like the following:

  • Ome-Tiff
  • OpenSlide
  • Ome-Zarr
  • PNG
  • Python
OMETiffConverter.to_tiledb(src, dest, level_min=0)
  • Python
OpenSlideConverter.to_tiledb(src, dest, level_min=0)
  • Python
OMEZarrConverter.to_tiledb(src, dest, level_min=0)
  • Python
PNGConverter.to_tiledb(src, dest, level_min=0)

You can also use the wrappers’ API for a more concise view:

  • Ome-Tiff
  • OpenSlide
  • Ome-Zarr
  • PNG
  • Python
from_bioimg(src, dest, level_min=0, converter=Converters.OMETIFF)
  • Python
from_tiledb(src, dest, level_min=0, converter=Converters.OSD)
  • Python
OMEZarrConverter.to_tiledb(src, dest, level_min=0, converter=Converters.OMEZARR)
  • Python
PNGConverter.to_tiledb(src, dest, level_min=0, Converters.PNG)

Use the Wrappers API to ingest a sample image into TileDB. For this quickstart, you’ll use the OMETIFF converter to ingest an OME-TIFF image.

  • Python
import os
import shutil

import requests

url = "https://github.com/libvips/libvips/raw/refs/heads/master/test/test-suite/images/CMU-1-Small-Region.svs"
response = requests.get(url, stream=True)

data_home = os.path.join(root_dir, "data.svs")
data_dest = os.path.join(root_dir, "data.tdb")

with open(data_home, "wb") as out_file:
    shutil.copyfileobj(response.raw, out_file)

from_bioimg(data_home, data_dest, converter=Converters.OMETIFF)
tiledb.bioimg.converters.ome_tiff.OMETiffConverter
Tip

Check out the tutorials section to learn about advanced ingestion configurations like Batch Ingestion and Chunked Ingestion.

Read data

You may read image data with the TileDB-Py API directly, or by using the OpenSlide Python-compatible API.

TileDB-Py API

  • Python
import tiledb

with tiledb.Group(data_dest, "r") as ds:
    with tiledb.open(ds[0].uri) as A:
        print(A[0:99, 0:99])
OrderedDict([('intensity', array([[[221, 255, 158, ..., 243, 241, 246],
        [230, 255, 218, ..., 243, 241, 246],
        [222, 230, 231, ..., 243, 241, 246],
        ...,
        [165, 141, 145, ..., 244, 246, 248],
        [140, 164, 195, ..., 244, 246, 248],
        [122, 157, 189, ..., 244, 246, 248]],

       [[182, 172, 141, ..., 243, 241, 246],
        [172, 189, 160, ..., 243, 241, 246],
        [170, 210, 189, ..., 243, 241, 246],
        ...,
        [114,  88,  83, ..., 244, 246, 248],
        [ 78, 102, 138, ..., 244, 246, 248],
        [ 75,  89, 106, ..., 244, 246, 248]],

       [[221, 196, 164, ..., 243, 241, 246],
        [226, 212, 197, ..., 243, 241, 246],
        [184, 186, 189, ..., 243, 241, 246],
        ...,
        [147, 131, 137, ..., 244, 246, 248],
        [128, 124, 136, ..., 244, 246, 248],
        [120, 125, 138, ..., 244, 246, 248]]], dtype=uint8))])
Tip

For a more in-depth tutorial on using the TileDB-Py API to read TileDB-BioImaging data, check out the Read Biomedical Images with TileDB-Py tutorial.

OpenSlide Python API

  • Python
from tiledb.bioimg.openslide import TileDBOpenSlide

# Construct OpenSlide API wrapper
img = TileDBOpenSlide(data_dest)
region_data = img.read_region(location=(0, 0), level=0, size=(100, 100))
region_data
array([[[221, 182, 221],
        [255, 172, 196],
        [158, 141, 164],
        ...,
        [246, 246, 243],
        [246, 246, 243],
        [246, 246, 243]],

       [[230, 172, 226],
        [255, 189, 212],
        [218, 160, 197],
        ...,
        [246, 246, 243],
        [246, 246, 243],
        [246, 246, 243]],

       [[222, 170, 184],
        [230, 210, 186],
        [231, 189, 189],
        ...,
        [246, 246, 243],
        [246, 246, 243],
        [246, 246, 243]],

       ...,

       [[140,  78, 128],
        [164, 102, 124],
        [195, 138, 136],
        ...,
        [243, 243, 243],
        [243, 243, 243],
        [243, 243, 243]],

       [[122,  75, 120],
        [157,  89, 125],
        [189, 106, 138],
        ...,
        [243, 243, 243],
        [243, 243, 243],
        [243, 243, 243]],

       [[188, 139, 171],
        [184, 107, 171],
        [180,  85, 171],
        ...,
        [243, 243, 243],
        [243, 243, 243],
        [243, 243, 243]]], dtype=uint8)

Visit the OpenSlide Python API documentation for all available commands. For a more in-depth tutorial on using the OpenSlide Python API to read TileDB-BioImaging data, check out the Read Biomedical Images with OpenSlide tutorial.

Visualization

If you want to take advantage of TileDB’s built-in viewer, you can preview bioimaging assets within in the TileDB UI after registering them. You can always use other visualization tools like Pillow:

  • Python
import PIL

img = PIL.Image.fromarray(region_data)
img

You can also use TileDB’s other integrations with famous rendering tools like napari, as shown in the napari tutorial.

Export to OME formats

The TileDB-BioImaging library offers a utility function to export a TileDB stored image to different OME formats.

  • Python
import os

from tiledb.bioimg import Converters, to_bioimg

data_export = os.path.join(root_dir, "data_out.svs")
to_bioimg(data_dest, data_export, converter=Converters.OMETIFF)
tiledb.bioimg.converters.ome_tiff.OMETiffConverter

Cleanup

Clean up in the end by removing the tutorial data.

  • Python
if os.path.exists(root_dir):
    shutil.rmtree(root_dir)
Storage Format Spec
Tutorials