1. Structure
  2. Arrays
  3. Foundation
  4. Key Concepts
  5. Storage
  6. Datetimes
  • Home
  • What is TileDB?
  • Get Started
  • Explore Content
  • Accounts
    • Individual Accounts
      • Apply for the Free Tier
      • Profile
        • Overview
        • Cloud Credentials
        • Storage Paths
        • REST API Tokens
        • Credits
    • Organization Admins
      • Create an Organization
      • Profile
        • Overview
        • Members
        • Cloud Credentials
        • Storage Paths
        • Billing
      • API Tokens
    • Organization Members
      • Organization Invitations
      • Profile
        • Overview
        • Members
        • Cloud Credentials
        • Storage Paths
        • Billing
      • API Tokens
  • Catalog
    • Introduction
    • Data
      • Arrays
      • Tables
      • Single-Cell (SOMA)
      • Genomics (VCF)
      • Biomedical Imaging
      • Vector Search
      • Files
    • Code
      • Notebooks
      • Dashboards
      • User-Defined Functions
      • Task Graphs
      • ML Models
    • Groups
    • Marketplace
    • Search
  • Collaborate
    • Introduction
    • Organizations
    • Access Control
      • Introduction
      • Share Assets
      • Asset Permissions
      • Public Assets
    • Logging
    • Marketplace
  • Analyze
    • Introduction
    • Slice Data
    • Multi-Region Redirection
    • Notebooks
      • Launch a Notebook
      • Usage
      • Widgets
      • Notebook Image Dependencies
    • Dashboards
      • Dashboards
      • Streamlit
    • Preview
    • User-Defined Functions
    • Task Graphs
    • Serverless SQL
    • Monitor
      • Task Log
      • Task Graph Log
  • Scale
    • Introduction
    • Task Graphs
    • API Usage
  • Structure
    • Why Structure Is Important
    • Arrays
      • Introduction
      • Quickstart
      • Foundation
        • Array Data Model
        • Key Concepts
          • Storage
            • Arrays
            • Dimensions
            • Attributes
            • Cells
            • Domain
            • Tiles
            • Data Layout
            • Compression
            • Encryption
            • Tile Filters
            • Array Schema
            • Schema Evolution
            • Fragments
            • Fragment Metadata
            • Commits
            • Indexing
            • Array Metadata
            • Datetimes
            • Groups
            • Object Stores
          • Compute
            • Writes
            • Deletions
            • Consolidation
            • Vacuuming
            • Time Traveling
            • Reads
            • Query Conditions
            • Aggregates
            • User-Defined Functions
            • Distributed Compute
            • Concurrency
            • Parallelism
        • Storage Format Spec
      • Tutorials
        • Basics
          • Basic Dense Array
          • Basic Sparse Array
          • Array Metadata
          • Compression
          • Encryption
          • Data Layout
          • Tile Filters
          • Datetimes
          • Multiple Attributes
          • Variable-Length Attributes
          • String Dimensions
          • Nullable Attributes
          • Multi-Range Reads
          • Query Conditions
          • Aggregates
          • Deletions
          • Catching Errors
          • Configuration
          • Basic S3 Example
          • Basic TileDB Cloud
          • fromDataFrame
          • Palmer Penguins
        • Advanced
          • Schema Evolution
          • Advanced Writes
            • Write at a Timestamp
            • Get Fragment Info
            • Consolidation
              • Fragments
              • Fragment List
              • Consolidation Plan
              • Commits
              • Fragment Metadata
              • Array Metadata
            • Vacuuming
              • Fragments
              • Commits
              • Fragment Metadata
              • Array Metadata
          • Advanced Reads
            • Get Fragment Info
            • Time Traveling
              • Introduction
              • Fragments
              • Array Metadata
              • Schema Evolution
          • Array Upgrade
          • Backends
            • Amazon S3
            • Azure Blob Storage
            • Google Cloud Storage
            • MinIO
            • Lustre
          • Virtual Filesystem
          • User-Defined Functions
          • Distributed Compute
          • Result Estimation
          • Incomplete Queries
        • Management
          • Array Schema
          • Groups
          • Object Management
        • Performance
          • Summary of Factors
          • Dense vs. Sparse
          • Dimensions vs. Attributes
          • Compression
          • Tiling and Data Layout
          • Tuning Writes
          • Tuning Reads
      • API Reference
    • Tables
      • Introduction
      • Quickstart
      • Foundation
        • Data Model
        • Key Concepts
          • Indexes
          • Columnar Storage
          • Compression
          • Data Manipulation
          • Optimize Tables
          • ACID
          • Serverless SQL
          • SQL Connectors
          • Dataframes
          • CSV Ingestion
      • Tutorials
        • Basics
          • Ingestion with SQL
          • CSV Ingestion
          • Basic S3 Example
          • Running Locally
        • Advanced
          • Scalable Ingestion
          • Scalable Queries
      • API Reference
    • AI & ML
      • Vector Search
        • Introduction
        • Quickstart
        • Foundation
          • Data Model
          • Key Concepts
            • Vector Search
            • Vector Databases
            • Algorithms
            • Distance Metrics
            • Updates
            • Deployment Methods
            • Architecture
            • Distributed Compute
          • Storage Format Spec
        • Tutorials
          • Basics
            • Ingestion & Querying
            • Updates
            • Deletions
            • Basic S3 Example
            • Running Locally
          • Advanced
            • Versioning
            • Time Traveling
            • Consolidation
            • Distributed Compute
            • RAG LLM
            • LLM Memory
            • File Search
            • Image Search
            • Protein Search
          • Performance
        • API Reference
      • ML Models
        • Introduction
        • Quickstart
        • Foundation
          • Basics
          • Storage
          • Cloud Execution
          • Why TileDB for Machine Learning
        • Tutorials
          • Ingestion
            • Data Ingestion
              • Dense Datasets
              • Sparse Datasets
            • ML Model Ingestion
          • Management
            • Array Schema
            • Machine Learning: Groups
            • Time Traveling
    • Life Sciences
      • Single-cell
        • Introduction
        • Quickstart
        • Foundation
          • Data Model
          • Key Concepts
            • Data Structures
            • Use of Apache Arrow
            • Join IDs
            • State Management
            • TileDB Cloud URIs
          • SOMA API Specification
        • Tutorials
          • Data Ingestion
          • Bulk Ingestion Tutorial
          • Data Access
          • Distributed Compute
          • Basic S3 Example
          • Multi-Experiment Queries
          • Appending Data to a SOMA Experiment
          • Add New Measurements
          • SQL Queries
          • Running Locally
          • Shapes in TileDB-SOMA
          • Drug Discovery App
        • Spatial
          • Introduction
          • Foundation
            • Spatial Data Model
            • Data Structures
          • Tutorials
            • Spatial Data Ingestion
            • Access Spatial Data
            • Manage Coordinate Spaces
        • API Reference
      • Population Genomics
        • Introduction
        • Quickstart
        • Foundation
          • Data Model
          • Key Concepts
            • The N+1 Problem
            • Architecture
            • Arrays
            • Ingestion
            • Reads
            • Variant Statistics
            • Annotations
            • User-Defined Functions
            • Tables and SQL
            • Distributed Compute
          • Storage Format Spec
        • Tutorials
          • Basics
            • Basic Ingestion
            • Basic Queries
            • Export to VCF
            • Add New Samples
            • Deleting Samples
            • Basic S3 Example
            • Basic TileDB Cloud
          • Advanced
            • Scalable Ingestion
            • Scalable Queries
            • Query Transforms
            • Handling Large Queries
            • Annotations
              • Finding Annotations
              • Embedded Annotations
              • External Annotations
              • Annotation VCFs
              • Ingesting Annotations
            • Variant Statistics
            • Tables and SQL
            • User-Defined Functions
            • Sample Metadata
            • Split VCF
          • Performance
        • API Reference
          • Command Line Interface
          • Python API
          • Cloud API
      • Biomedical Imaging
        • Introduction
        • Foundation
          • Data Model
          • Key Concepts
            • Arrays
            • Ingestion
            • Reads
            • User Defined Functions
          • Storage Format Spec
        • Quickstart
        • Tutorials
          • Basics
            • Ingestion
            • Read
              • OpenSlide
              • TileDB-Py
          • Advanced
            • Batched Ingestion
            • Chunked Ingestion
            • Machine Learning
              • PyTorch
            • Napari
    • Files
  • API Reference
  • Self-Hosting
    • Installation
    • Upgrades
    • Administrative Tasks
    • Image Customization
      • Customize User-Defined Function Images
      • AWS ECR Container Registry
      • Customize Jupyter Notebook Images
    • Single Sign-On
      • Configure Single Sign-On
      • OpenID Connect
      • Okta SCIM
      • Microsoft Entra
  • Glossary
  1. Structure
  2. Arrays
  3. Foundation
  4. Key Concepts
  5. Storage
  6. Datetimes

Datetimes

arrays
foundation
datetimes
Datetime values work well as attributes or array domains within TileDB.

TileDB supports datetime values for attributes and array domains. The representation used by TileDB follows the design of NumPy’s np.datetime64 datatype.

Values for the datetime types are internally stored and manipulated as int64 values. From the perspective of core TileDB internally, the datetime datatypes are simply aliases for TILEDB_INT64.

The meaning of an integral datetime value depends on three things:

  1. A reference date. TileDB fixes this to the UNIX epoch time (1970-01-01 at 12:00 AM UTC). This is not currently configurable.

  2. A unit of time. For example: day, month, hour, or nanosecond.

  3. An integer value. This the integer number of time units relative to the reference date.

For example, a value of 10 for the type TILEDB_DATETIME_DAY refers to 12:00 am on 1970-01-10. A value of -18 for the type TILEDB_DATETIME_HR refers to 6:00 am on 1969-12-31, or 1969-12-31T06:00Z in ISO8601 format.

This means that each date unit of datetime is capable of representing a different range of dates at different resolutions. The following table (values taken from the NumPy np.datetime64 documentation) summarizes each date unit’s relative and absolute range:

  • Python
  • R
  • C
  • C++
  • Java
  • Go
  • C#
Datatype Time span (relative) Time span (absolute)
"datetime64[Y]" +/- 9.2e18 years [9.2e18 BC, 9.2e18 AD]
"datetime64[M]" +/- 7.6e17 years [7.6e17 BC, 7.6e17 AD]
"datetime64[W]" +/- 1.7e17 years [1.7e17 BC, 1.7e17 AD]
"datetime64[D]" +/- 2.5e16 years [2.5e16 BC, 2.5e16 AD]
"datetime64[h]" +/- 1.0e15 years [1.0e15 BC, 1.0e15 AD]
"datetime64[m]" +/- 1.7e13 years [1.7e13 BC, 1.7e13 AD]
"datetime64[s]" +/- 2.9e11 years [2.9e11 BC, 2.9e11 AD]
"datetime64[ms]" +/- 2.9e8 years [2.9e8 BC, 2.9e8 AD]
"datetime64[us]" +/- 2.9e5 years [290301 BC, 294241 AD]
"datetime64[ns]" +/- 292 years [1678 AD, 2262 AD]
"datetime64[ps]" +/- 106 days [1969 AD, 1970 AD]
"datetime64[fs]" +/- 2.6 hours [1969 AD, 1970 AD]
"datetime64[as]" +/- 9.2 seconds [1969 AD, 1970 AD]
Datatype Time span (relative) Time span (absolute)
"DATETIME_YEAR" +/- 9.2e18 years [9.2e18 BC, 9.2e18 AD]
"DATETIME_MONTH" +/- 7.6e17 years [7.6e17 BC, 7.6e17 AD]
"DATETIME_WEEK" +/- 1.7e17 years [1.7e17 BC, 1.7e17 AD]
"DATETIME_DAY" +/- 2.5e16 years [2.5e16 BC, 2.5e16 AD]
"DATETIME_HR" +/- 1.0e15 years [1.0e15 BC, 1.0e15 AD]
"DATETIME_MIN" +/- 1.7e13 years [1.7e13 BC, 1.7e13 AD]
"DATETIME_SEC" +/- 2.9e11 years [2.9e11 BC, 2.9e11 AD]
"DATETIME_MS" +/- 2.9e8 years [2.9e8 BC, 2.9e8 AD]
"DATETIME_US" +/- 2.9e5 years [290301 BC, 294241 AD]
"DATETIME_NS" +/- 292 years [1678 AD, 2262 AD]
"DATETIME_PS" +/- 106 days [1969 AD, 1970 AD]
"DATETIME_FS" +/- 2.6 hours [1969 AD, 1970 AD]
"DATETIME_AS" +/- 9.2 seconds [1969 AD, 1970 AD]
Datatype Time span (relative) Time span (absolute)
TILEDB_DATETIME_YEAR +/- 9.2e18 years [9.2e18 BC, 9.2e18 AD]
TILEDB_DATETIME_MONTH +/- 7.6e17 years [7.6e17 BC, 7.6e17 AD]
TILEDB_DATETIME_WEEK +/- 1.7e17 years [1.7e17 BC, 1.7e17 AD]
TILEDB_DATETIME_DAY +/- 2.5e16 years [2.5e16 BC, 2.5e16 AD]
TILEDB_DATETIME_HR +/- 1.0e15 years [1.0e15 BC, 1.0e15 AD]
TILEDB_DATETIME_MIN +/- 1.7e13 years [1.7e13 BC, 1.7e13 AD]
TILEDB_DATETIME_SEC +/- 2.9e11 years [2.9e11 BC, 2.9e11 AD]
TILEDB_DATETIME_MS +/- 2.9e8 years [2.9e8 BC, 2.9e8 AD]
TILEDB_DATETIME_US +/- 2.9e5 years [290301 BC, 294241 AD]
TILEDB_DATETIME_NS +/- 292 years [1678 AD, 2262 AD]
TILEDB_DATETIME_PS +/- 106 days [1969 AD, 1970 AD]
TILEDB_DATETIME_FS +/- 2.6 hours [1969 AD, 1970 AD]
TILEDB_DATETIME_AS +/- 9.2 seconds [1969 AD, 1970 AD]
Datatype Time span (relative) Time span (absolute)
TILEDB_DATETIME_YEAR +/- 9.2e18 years [9.2e18 BC, 9.2e18 AD]
TILEDB_DATETIME_MONTH +/- 7.6e17 years [7.6e17 BC, 7.6e17 AD]
TILEDB_DATETIME_WEEK +/- 1.7e17 years [1.7e17 BC, 1.7e17 AD]
TILEDB_DATETIME_DAY +/- 2.5e16 years [2.5e16 BC, 2.5e16 AD]
TILEDB_DATETIME_HR +/- 1.0e15 years [1.0e15 BC, 1.0e15 AD]
TILEDB_DATETIME_MIN +/- 1.7e13 years [1.7e13 BC, 1.7e13 AD]
TILEDB_DATETIME_SEC +/- 2.9e11 years [2.9e11 BC, 2.9e11 AD]
TILEDB_DATETIME_MS +/- 2.9e8 years [2.9e8 BC, 2.9e8 AD]
TILEDB_DATETIME_US +/- 2.9e5 years [290301 BC, 294241 AD]
TILEDB_DATETIME_NS +/- 292 years [1678 AD, 2262 AD]
TILEDB_DATETIME_PS +/- 106 days [1969 AD, 1970 AD]
TILEDB_DATETIME_FS +/- 2.6 hours [1969 AD, 1970 AD]
TILEDB_DATETIME_AS +/- 9.2 seconds [1969 AD, 1970 AD]
Datatype Time span (relative) Time span (absolute)
TILEDB_DATETIME_YEAR +/- 9.2e18 years [9.2e18 BC, 9.2e18 AD]
TILEDB_DATETIME_MONTH +/- 7.6e17 years [7.6e17 BC, 7.6e17 AD]
TILEDB_DATETIME_WEEK +/- 1.7e17 years [1.7e17 BC, 1.7e17 AD]
TILEDB_DATETIME_DAY +/- 2.5e16 years [2.5e16 BC, 2.5e16 AD]
TILEDB_DATETIME_HR +/- 1.0e15 years [1.0e15 BC, 1.0e15 AD]
TILEDB_DATETIME_MIN +/- 1.7e13 years [1.7e13 BC, 1.7e13 AD]
TILEDB_DATETIME_SEC +/- 2.9e11 years [2.9e11 BC, 2.9e11 AD]
TILEDB_DATETIME_MS +/- 2.9e8 years [2.9e8 BC, 2.9e8 AD]
TILEDB_DATETIME_US +/- 2.9e5 years [290301 BC, 294241 AD]
TILEDB_DATETIME_NS +/- 292 years [1678 AD, 2262 AD]
TILEDB_DATETIME_PS +/- 106 days [1969 AD, 1970 AD]
TILEDB_DATETIME_FS +/- 2.6 hours [1969 AD, 1970 AD]
TILEDB_DATETIME_AS +/- 9.2 seconds [1969 AD, 1970 AD]
Datatype Time span (relative) Time span (absolute)
TILEDB_DATETIME_YEAR +/- 9.2e18 years [9.2e18 BC, 9.2e18 AD]
TILEDB_DATETIME_MONTH +/- 7.6e17 years [7.6e17 BC, 7.6e17 AD]
TILEDB_DATETIME_WEEK +/- 1.7e17 years [1.7e17 BC, 1.7e17 AD]
TILEDB_DATETIME_DAY +/- 2.5e16 years [2.5e16 BC, 2.5e16 AD]
TILEDB_DATETIME_HR +/- 1.0e15 years [1.0e15 BC, 1.0e15 AD]
TILEDB_DATETIME_MIN +/- 1.7e13 years [1.7e13 BC, 1.7e13 AD]
TILEDB_DATETIME_SEC +/- 2.9e11 years [2.9e11 BC, 2.9e11 AD]
TILEDB_DATETIME_MS +/- 2.9e8 years [2.9e8 BC, 2.9e8 AD]
TILEDB_DATETIME_US +/- 2.9e5 years [290301 BC, 294241 AD]
TILEDB_DATETIME_NS +/- 292 years [1678 AD, 2262 AD]
TILEDB_DATETIME_PS +/- 106 days [1969 AD, 1970 AD]
TILEDB_DATETIME_FS +/- 2.6 hours [1969 AD, 1970 AD]
TILEDB_DATETIME_AS +/- 9.2 seconds [1969 AD, 1970 AD]
Datatype Time span (relative) Time span (absolute)
DataType.DateTimeYear +/- 9.2e18 years [9.2e18 BC, 9.2e18 AD]
DataType.DateTimeMonth +/- 7.6e17 years [7.6e17 BC, 7.6e17 AD]
DataType.DateTimeWeek +/- 1.7e17 years [1.7e17 BC, 1.7e17 AD]
DataType.DateTimeDay +/- 2.5e16 years [2.5e16 BC, 2.5e16 AD]
DataType.DateTimeHour +/- 1.0e15 years [1.0e15 BC, 1.0e15 AD]
DataType.DateTimeMinute +/- 1.7e13 years [1.7e13 BC, 1.7e13 AD]
DataType.DateTimeSecond +/- 2.9e11 years [2.9e11 BC, 2.9e11 AD]
DataType.DateTimeMillisecond +/- 2.9e8 years [2.9e8 BC, 2.9e8 AD]
DataType.DateTimeMicrosecond +/- 2.9e5 years [290301 BC, 294241 AD]
DataType.DateTimeNanosecond +/- 292 years [1678 AD, 2262 AD]
DataType.DateTimePicosecond +/- 106 days [1969 AD, 1970 AD]
DataType.DateTimeFemtosecond +/- 2.6 hours [1969 AD, 1970 AD]
DataType.DateTimeAttosecond +/- 9.2 seconds [1969 AD, 1970 AD]
Array Metadata
Groups