1. Structure
  2. AI & ML
  3. ML Models
  4. Tutorials
  5. Management
  6. Machine Learning: Groups
  • Home
  • What is TileDB?
  • Get Started
  • Explore Content
  • Accounts
    • Individual Accounts
      • Apply for the Free Tier
      • Profile
        • Overview
        • Cloud Credentials
        • Storage Paths
        • REST API Tokens
        • Credits
    • Organization Admins
      • Create an Organization
      • Profile
        • Overview
        • Members
        • Cloud Credentials
        • Storage Paths
        • Billing
      • API Tokens
    • Organization Members
      • Organization Invitations
      • Profile
        • Overview
        • Members
        • Cloud Credentials
        • Storage Paths
        • Billing
      • API Tokens
  • Catalog
    • Introduction
    • Data
      • Arrays
      • Tables
      • Single-Cell (SOMA)
      • Genomics (VCF)
      • Biomedical Imaging
      • Vector Search
      • Files
    • Code
      • Notebooks
      • Dashboards
      • User-Defined Functions
      • Task Graphs
      • ML Models
    • Groups
    • Marketplace
    • Search
  • Collaborate
    • Introduction
    • Organizations
    • Access Control
      • Introduction
      • Share Assets
      • Asset Permissions
      • Public Assets
    • Logging
    • Marketplace
  • Analyze
    • Introduction
    • Slice Data
    • Multi-Region Redirection
    • Notebooks
      • Launch a Notebook
      • Usage
      • Widgets
      • Notebook Image Dependencies
    • Dashboards
      • Dashboards
      • Streamlit
    • Preview
    • User-Defined Functions
    • Task Graphs
    • Serverless SQL
    • Monitor
      • Task Log
      • Task Graph Log
  • Scale
    • Introduction
    • Task Graphs
    • API Usage
  • Structure
    • Why Structure Is Important
    • Arrays
      • Introduction
      • Quickstart
      • Foundation
        • Array Data Model
        • Key Concepts
          • Storage
            • Arrays
            • Dimensions
            • Attributes
            • Cells
            • Domain
            • Tiles
            • Data Layout
            • Compression
            • Encryption
            • Tile Filters
            • Array Schema
            • Schema Evolution
            • Fragments
            • Fragment Metadata
            • Commits
            • Indexing
            • Array Metadata
            • Datetimes
            • Groups
            • Object Stores
          • Compute
            • Writes
            • Deletions
            • Consolidation
            • Vacuuming
            • Time Traveling
            • Reads
            • Query Conditions
            • Aggregates
            • User-Defined Functions
            • Distributed Compute
            • Concurrency
            • Parallelism
        • Storage Format Spec
      • Tutorials
        • Basics
          • Basic Dense Array
          • Basic Sparse Array
          • Array Metadata
          • Compression
          • Encryption
          • Data Layout
          • Tile Filters
          • Datetimes
          • Multiple Attributes
          • Variable-Length Attributes
          • String Dimensions
          • Nullable Attributes
          • Multi-Range Reads
          • Query Conditions
          • Aggregates
          • Deletions
          • Catching Errors
          • Configuration
          • Basic S3 Example
          • Basic TileDB Cloud
          • fromDataFrame
          • Palmer Penguins
        • Advanced
          • Schema Evolution
          • Advanced Writes
            • Write at a Timestamp
            • Get Fragment Info
            • Consolidation
              • Fragments
              • Fragment List
              • Consolidation Plan
              • Commits
              • Fragment Metadata
              • Array Metadata
            • Vacuuming
              • Fragments
              • Commits
              • Fragment Metadata
              • Array Metadata
          • Advanced Reads
            • Get Fragment Info
            • Time Traveling
              • Introduction
              • Fragments
              • Array Metadata
              • Schema Evolution
          • Array Upgrade
          • Backends
            • Amazon S3
            • Azure Blob Storage
            • Google Cloud Storage
            • MinIO
            • Lustre
          • Virtual Filesystem
          • User-Defined Functions
          • Distributed Compute
          • Result Estimation
          • Incomplete Queries
        • Management
          • Array Schema
          • Groups
          • Object Management
        • Performance
          • Summary of Factors
          • Dense vs. Sparse
          • Dimensions vs. Attributes
          • Compression
          • Tiling and Data Layout
          • Tuning Writes
          • Tuning Reads
      • API Reference
    • Tables
      • Introduction
      • Quickstart
      • Foundation
        • Data Model
        • Key Concepts
          • Indexes
          • Columnar Storage
          • Compression
          • Data Manipulation
          • Optimize Tables
          • ACID
          • Serverless SQL
          • SQL Connectors
          • Dataframes
          • CSV Ingestion
      • Tutorials
        • Basics
          • Ingestion with SQL
          • CSV Ingestion
          • Basic S3 Example
          • Running Locally
        • Advanced
          • Scalable Ingestion
          • Scalable Queries
      • API Reference
    • AI & ML
      • Vector Search
        • Introduction
        • Quickstart
        • Foundation
          • Data Model
          • Key Concepts
            • Vector Search
            • Vector Databases
            • Algorithms
            • Distance Metrics
            • Updates
            • Deployment Methods
            • Architecture
            • Distributed Compute
          • Storage Format Spec
        • Tutorials
          • Basics
            • Ingestion & Querying
            • Updates
            • Deletions
            • Basic S3 Example
            • Running Locally
          • Advanced
            • Versioning
            • Time Traveling
            • Consolidation
            • Distributed Compute
            • RAG LLM
            • LLM Memory
            • File Search
            • Image Search
            • Protein Search
          • Performance
        • API Reference
      • ML Models
        • Introduction
        • Quickstart
        • Foundation
          • Basics
          • Storage
          • Cloud Execution
          • Why TileDB for Machine Learning
        • Tutorials
          • Ingestion
            • Data Ingestion
              • Dense Datasets
              • Sparse Datasets
            • ML Model Ingestion
          • Management
            • Array Schema
            • Machine Learning: Groups
            • Time Traveling
    • Life Sciences
      • Single-cell
        • Introduction
        • Quickstart
        • Foundation
          • Data Model
          • Key Concepts
            • Data Structures
            • Use of Apache Arrow
            • Join IDs
            • State Management
            • TileDB Cloud URIs
          • SOMA API Specification
        • Tutorials
          • Data Ingestion
          • Bulk Ingestion Tutorial
          • Data Access
          • Distributed Compute
          • Basic S3 Example
          • Multi-Experiment Queries
          • Appending Data to a SOMA Experiment
          • Add New Measurements
          • SQL Queries
          • Running Locally
          • Shapes in TileDB-SOMA
          • Drug Discovery App
        • Spatial
          • Introduction
          • Foundation
            • Spatial Data Model
            • Data Structures
          • Tutorials
            • Spatial Data Ingestion
            • Access Spatial Data
            • Manage Coordinate Spaces
        • API Reference
      • Population Genomics
        • Introduction
        • Quickstart
        • Foundation
          • Data Model
          • Key Concepts
            • The N+1 Problem
            • Architecture
            • Arrays
            • Ingestion
            • Reads
            • Variant Statistics
            • Annotations
            • User-Defined Functions
            • Tables and SQL
            • Distributed Compute
          • Storage Format Spec
        • Tutorials
          • Basics
            • Basic Ingestion
            • Basic Queries
            • Export to VCF
            • Add New Samples
            • Deleting Samples
            • Basic S3 Example
            • Basic TileDB Cloud
          • Advanced
            • Scalable Ingestion
            • Scalable Queries
            • Query Transforms
            • Handling Large Queries
            • Annotations
              • Finding Annotations
              • Embedded Annotations
              • External Annotations
              • Annotation VCFs
              • Ingesting Annotations
            • Variant Statistics
            • Tables and SQL
            • User-Defined Functions
            • Sample Metadata
            • Split VCF
          • Performance
        • API Reference
          • Command Line Interface
          • Python API
          • Cloud API
      • Biomedical Imaging
        • Introduction
        • Foundation
          • Data Model
          • Key Concepts
            • Arrays
            • Ingestion
            • Reads
            • User Defined Functions
          • Storage Format Spec
        • Quickstart
        • Tutorials
          • Basics
            • Ingestion
            • Read
              • OpenSlide
              • TileDB-Py
          • Advanced
            • Batched Ingestion
            • Chunked Ingestion
            • Machine Learning
              • PyTorch
            • Napari
    • Files
  • API Reference
  • Self-Hosting
    • Installation
    • Upgrades
    • Administrative Tasks
    • Image Customization
      • Customize User-Defined Function Images
      • AWS ECR Container Registry
      • Customize Jupyter Notebook Images
    • Single Sign-On
      • Configure Single Sign-On
      • OpenID Connect
      • Okta SCIM
      • Microsoft Entra
  • Glossary

On this page

  • Create an ML group
  • Add a dataset array to a sub-group
  • Add a model array to a sub-group
  • Iterate group members
  • Delete groups
  1. Structure
  2. AI & ML
  3. ML Models
  4. Tutorials
  5. Management
  6. Machine Learning: Groups

Machine Learning: Groups

ai/ml
machine learning (ml)
tutorials
groups
You will learn how to organize your ML assets in groups with this tutorial.

In this tutorial, you will learn how to organize your Machine Learning (ML) assets under a single, logical group. These assets can be datasets, models (from different ML frameworks solving the same problem), or any other TileDB asset that you want to bundle under the same semantics. Storing ML datasets alongside ML models in a registry for experimentation offers several advantages:

  • Enhanced reproducibility
  • Version consistency
  • Efficient experimentation
  • Iterative model development
  • Data versioning and lineage
  • Collaboration and knowledge sharing
  • Complete experiment documentation
  • Reduced dependencies on external resources
Note

The following tutorial assumes that you have successfully completed the tutorials for ML dataset ingestion and ML model ingestion in TileDB.

Create an ML group

You can create a group that will store your ML assets:

group = tempfile.mkdtemp("mnist_experiment")
tiledb.group_create(group)
tdb_grp = tiledb.Group(group, "w")
tdb_grp.close()

You can create also sub-groups according to your use case. Users have the flexibility to bundle multiple models and datasets, from the same or different frameworks, into a group. This group can encompass elements that address or correspond to the same application, solution, algorithm, or problem statement. For this tutorial, you will be creating two subgroups. This will allow you to store your datasets and models under the same group, which can serve as a directory for storing all your experiment’s related assets, following a logical hierarchy.

with tiledb.Group(group, "w") as grp:
    subgrp_datasets_path = "datasets"
    subgrp_models_path = "models"

    # you can also use `tiledb.group_create()` to create groups
    tiledb.group_create(subgrp_datasets_path)
    tiledb.group_create(subgrp_models_path)

    grp.add(subgrp_datasets_path)
    grp.add(subgrp_models_path)

Add a dataset array to a sub-group

tdb_data_grp = tiledb.Group(subgrp_datasets_path, "w")
tdb_data_grp.add(dataset, name="mnist_dataset")
tdb_data_grp.close()

Add a model array to a sub-group

tdb_model_grp = tiledb.Group(subgrp_models_path, "w")
tdb_model_grp.add(tf_model_array, name="tf_mnist_model")
tdb_model_grp.add(pytorch_model_array, name="pytorch_mnist_model")
tdb_model_grp.close()

Iterate group members

tdb_grp.open("r")

# show a directory structure of the groups
print(tdb_grp)

# iterate through the group members
for i in range(0, len(tdb_grp)):
    print(f"URI: {tdb_grp[i].uri}, Type: {tdb_grp[i].type}")

# remember to close the array
tdb_grp.close()
tmps6lrj65rmnist_experiment GROUP
|-- datasets GROUP
|------ mnist_dataset ARRAY
|-- models GROUP
|------ tf_mnist_model ARRAY
|------ pytorch_mnist_model ARRAY

URI: file:///Users/konstantinostsitsimpikos/tiledb_dev/arrayloader-benchmarks/models, Type: <class 'tiledb.group.Group'>
URI: file:///Users/konstantinostsitsimpikos/tiledb_dev/arrayloader-benchmarks/datasets, Type: <class 'tiledb.group.Group'>

Delete groups

import shutil

with tiledb.Group(subgrp_datasets_path, "m") as subgrp:
    # recursively delete the subgroup and array
    subgrp.delete(recursive=True)
    # make sure to delete the subgroup folder and array folder
    shutil.rmtree(subgrp_datasets_path)
    shutil.rmtree(subgrp_models_path)
    shutil.rmtree(dataset)
    shutil.rmtree(tf_model_array)
    shutil.rmtree(pytorch_model_array)


with tiledb.Group(group, "m") as grp:
    # delete group folder contents
    grp.delete()
    # make sure to delete the group folder
    shutil.rmtree(group)

For more details on TileDB groups, visit Arrays Tutorials: Groups.

Array Schema
Time Traveling