1. Structure
  2. Arrays
  3. Tutorials
  4. Basics
  5. Encryption
  • Home
  • What is TileDB?
  • Get Started
  • Explore Content
  • Accounts
    • Individual Accounts
      • Apply for the Free Tier
      • Profile
        • Overview
        • Cloud Credentials
        • Storage Paths
        • REST API Tokens
        • Credits
    • Organization Admins
      • Create an Organization
      • Profile
        • Overview
        • Members
        • Cloud Credentials
        • Storage Paths
        • Billing
      • API Tokens
    • Organization Members
      • Organization Invitations
      • Profile
        • Overview
        • Members
        • Cloud Credentials
        • Storage Paths
        • Billing
      • API Tokens
  • Catalog
    • Introduction
    • Data
      • Arrays
      • Tables
      • Single-Cell (SOMA)
      • Genomics (VCF)
      • Biomedical Imaging
      • Vector Search
      • Files
    • Code
      • Notebooks
      • Dashboards
      • User-Defined Functions
      • Task Graphs
      • ML Models
    • Groups
    • Marketplace
    • Search
  • Collaborate
    • Introduction
    • Organizations
    • Access Control
      • Introduction
      • Share Assets
      • Asset Permissions
      • Public Assets
    • Logging
    • Marketplace
  • Analyze
    • Introduction
    • Slice Data
    • Multi-Region Redirection
    • Notebooks
      • Launch a Notebook
      • Usage
      • Widgets
      • Notebook Image Dependencies
    • Dashboards
      • Dashboards
      • Streamlit
    • Preview
    • User-Defined Functions
    • Task Graphs
    • Serverless SQL
    • Monitor
      • Task Log
      • Task Graph Log
  • Scale
    • Introduction
    • Task Graphs
    • API Usage
  • Structure
    • Why Structure Is Important
    • Arrays
      • Introduction
      • Quickstart
      • Foundation
        • Array Data Model
        • Key Concepts
          • Storage
            • Arrays
            • Dimensions
            • Attributes
            • Cells
            • Domain
            • Tiles
            • Data Layout
            • Compression
            • Encryption
            • Tile Filters
            • Array Schema
            • Schema Evolution
            • Fragments
            • Fragment Metadata
            • Commits
            • Indexing
            • Array Metadata
            • Datetimes
            • Groups
            • Object Stores
          • Compute
            • Writes
            • Deletions
            • Consolidation
            • Vacuuming
            • Time Traveling
            • Reads
            • Query Conditions
            • Aggregates
            • User-Defined Functions
            • Distributed Compute
            • Concurrency
            • Parallelism
        • Storage Format Spec
      • Tutorials
        • Basics
          • Basic Dense Array
          • Basic Sparse Array
          • Array Metadata
          • Compression
          • Encryption
          • Data Layout
          • Tile Filters
          • Datetimes
          • Multiple Attributes
          • Variable-Length Attributes
          • String Dimensions
          • Nullable Attributes
          • Multi-Range Reads
          • Query Conditions
          • Aggregates
          • Deletions
          • Catching Errors
          • Configuration
          • Basic S3 Example
          • Basic TileDB Cloud
          • fromDataFrame
          • Palmer Penguins
        • Advanced
          • Schema Evolution
          • Advanced Writes
            • Write at a Timestamp
            • Get Fragment Info
            • Consolidation
              • Fragments
              • Fragment List
              • Consolidation Plan
              • Commits
              • Fragment Metadata
              • Array Metadata
            • Vacuuming
              • Fragments
              • Commits
              • Fragment Metadata
              • Array Metadata
          • Advanced Reads
            • Get Fragment Info
            • Time Traveling
              • Introduction
              • Fragments
              • Array Metadata
              • Schema Evolution
          • Array Upgrade
          • Backends
            • Amazon S3
            • Azure Blob Storage
            • Google Cloud Storage
            • MinIO
            • Lustre
          • Virtual Filesystem
          • User-Defined Functions
          • Distributed Compute
          • Result Estimation
          • Incomplete Queries
        • Management
          • Array Schema
          • Groups
          • Object Management
        • Performance
          • Summary of Factors
          • Dense vs. Sparse
          • Dimensions vs. Attributes
          • Compression
          • Tiling and Data Layout
          • Tuning Writes
          • Tuning Reads
      • API Reference
    • Tables
      • Introduction
      • Quickstart
      • Foundation
        • Data Model
        • Key Concepts
          • Indexes
          • Columnar Storage
          • Compression
          • Data Manipulation
          • Optimize Tables
          • ACID
          • Serverless SQL
          • SQL Connectors
          • Dataframes
          • CSV Ingestion
      • Tutorials
        • Basics
          • Ingestion with SQL
          • CSV Ingestion
          • Basic S3 Example
          • Running Locally
        • Advanced
          • Scalable Ingestion
          • Scalable Queries
      • API Reference
    • AI & ML
      • Vector Search
        • Introduction
        • Quickstart
        • Foundation
          • Data Model
          • Key Concepts
            • Vector Search
            • Vector Databases
            • Algorithms
            • Distance Metrics
            • Updates
            • Deployment Methods
            • Architecture
            • Distributed Compute
          • Storage Format Spec
        • Tutorials
          • Basics
            • Ingestion & Querying
            • Updates
            • Deletions
            • Basic S3 Example
            • Running Locally
          • Advanced
            • Versioning
            • Time Traveling
            • Consolidation
            • Distributed Compute
            • RAG LLM
            • LLM Memory
            • File Search
            • Image Search
            • Protein Search
          • Performance
        • API Reference
      • ML Models
        • Introduction
        • Quickstart
        • Foundation
          • Basics
          • Storage
          • Cloud Execution
          • Why TileDB for Machine Learning
        • Tutorials
          • Ingestion
            • Data Ingestion
              • Dense Datasets
              • Sparse Datasets
            • ML Model Ingestion
          • Management
            • Array Schema
            • Machine Learning: Groups
            • Time Traveling
    • Life Sciences
      • Single-cell
        • Introduction
        • Quickstart
        • Foundation
          • Data Model
          • Key Concepts
            • Data Structures
            • Use of Apache Arrow
            • Join IDs
            • State Management
            • TileDB Cloud URIs
          • SOMA API Specification
        • Tutorials
          • Data Ingestion
          • Bulk Ingestion Tutorial
          • Data Access
          • Distributed Compute
          • Basic S3 Example
          • Multi-Experiment Queries
          • Appending Data to a SOMA Experiment
          • Add New Measurements
          • SQL Queries
          • Running Locally
          • Shapes in TileDB-SOMA
          • Drug Discovery App
        • Spatial
          • Introduction
          • Foundation
            • Spatial Data Model
            • Data Structures
          • Tutorials
            • Spatial Data Ingestion
            • Access Spatial Data
            • Manage Coordinate Spaces
        • API Reference
      • Population Genomics
        • Introduction
        • Quickstart
        • Foundation
          • Data Model
          • Key Concepts
            • The N+1 Problem
            • Architecture
            • Arrays
            • Ingestion
            • Reads
            • Variant Statistics
            • Annotations
            • User-Defined Functions
            • Tables and SQL
            • Distributed Compute
          • Storage Format Spec
        • Tutorials
          • Basics
            • Basic Ingestion
            • Basic Queries
            • Export to VCF
            • Add New Samples
            • Deleting Samples
            • Basic S3 Example
            • Basic TileDB Cloud
          • Advanced
            • Scalable Ingestion
            • Scalable Queries
            • Query Transforms
            • Handling Large Queries
            • Annotations
              • Finding Annotations
              • Embedded Annotations
              • External Annotations
              • Annotation VCFs
              • Ingesting Annotations
            • Variant Statistics
            • Tables and SQL
            • User-Defined Functions
            • Sample Metadata
            • Split VCF
          • Performance
        • API Reference
          • Command Line Interface
          • Python API
          • Cloud API
      • Biomedical Imaging
        • Introduction
        • Foundation
          • Data Model
          • Key Concepts
            • Arrays
            • Ingestion
            • Reads
            • User Defined Functions
          • Storage Format Spec
        • Quickstart
        • Tutorials
          • Basics
            • Ingestion
            • Read
              • OpenSlide
              • TileDB-Py
          • Advanced
            • Batched Ingestion
            • Chunked Ingestion
            • Machine Learning
              • PyTorch
            • Napari
    • Files
  • API Reference
  • Self-Hosting
    • Installation
    • Upgrades
    • Administrative Tasks
    • Image Customization
      • Customize User-Defined Function Images
      • AWS ECR Container Registry
      • Customize Jupyter Notebook Images
    • Single Sign-On
      • Configure Single Sign-On
      • OpenID Connect
      • Okta SCIM
      • Microsoft Entra
  • Glossary
  1. Structure
  2. Arrays
  3. Tutorials
  4. Basics
  5. Encryption

Encrypt an Array with an AES-256-GCM Key

arrays
tutorials
python
r
encryption
Learn how to encrypt your arrays with AES-256 key for secure storage.
How to run this tutorial

You can run this tutorial in two ways:

  1. Locally on your machine.
  2. On TileDB Cloud.

However, since TileDB Cloud has a free tier, we strongly recommend that you sign up and run everything there, as that requires no installations or deployment.

This tutorial explains how to create, write, and read encrypted arrays. For more information, visit the Key Concepts: Encryption section.

TileDB supports the Advanced Encryption Standard (AES). To create an encrypted array, you need to generate an AES-256 key and pass it to the corresponding array statements in your application.

Important

This page uses a sample AES-256 key 0123456789abcdeF0123456789abcdeF directly in its code examples for illustrative purposes only. Do not use this key to encrypt your arrays.

Additionally, do not store encryption keys within the code of your application.

First, import the necessary libraries, set the array URI (that is, its path, which in this tutorial will be on local storage), and delete any previously created arrays with the same name.

  • Python
  • R
# Import necessary libraries
import os.path
import shutil

import numpy as np
import tiledb

# Set array URI
array_uri = os.path.expanduser("~/encryption")

# Delete array if it already exists
if os.path.exists(array_uri):
    shutil.rmtree(array_uri)
library(tiledb)

array_uri <- path.expand("~/datetimes_r")

if (dir.exists(array_uri)) {
  unlink(array_uri, recursive = TRUE)
}

Next, create the array by specifying its schema. This is like the case where no encryption used, except you pass an encryption key in different methods and functions.

When working with encrypted arrays in Python, you pass the encryption key as a parameter into the commands that create and open the array. With R, you always pass the encryption key into a config object, which you pass into a context object. You use the context object when creating the array schema with tiledb_array_schema() and when creating or opening the array with tiledb_array().

  • Python
  • R
# Create the two dimensions
d1 = tiledb.Dim(name="d1", domain=(0, 3), tile=2, dtype=np.int32)
d2 = tiledb.Dim(name="d2", domain=(0, 3), tile=2, dtype=np.int32)

# Create a domain using the two dimensions
dom = tiledb.Domain(d1, d2)

# Create an attribute
# The filter list we created above is passed into the `filters` parameter
a = tiledb.Attr(name="a", dtype=np.int32)

# Create the array schema with `sparse=False`
sch = tiledb.ArraySchema(domain=dom, sparse=False, attrs=[a])

# Create an encryption key
encryption_key = "0123456789abcdeF0123456789abcdeF"

# Create the array on disk (it will initially be empty).
# Observe that the encryption key is passed into `key`.
# This indicates that the array will utilize encryption.
tiledb.Array.create(array_uri, sch, key=encryption_key)
# Create an encryption key
encryption_key <- "0123456789abcdeF0123456789abcdeF"

# define a config object to house the encryption_key
config <- tiledb_config()
config["sm.encryption_type"] <- "AES_256_GCM"
config["sm.encryption_key"] <- encryption_key

# set the context
ctx <- tiledb_ctx(config)

# Create the two dimensions
d1 <- tiledb_dim("d1", c(1L, 4L), 2L, "INT32")
d2 <- tiledb_dim("d2", c(1L, 4L), 2L, "INT32")

# Create a domain using the two dimensions
dom <- tiledb_domain(dims = c(d1, d2))

# Create an attribute
a <- tiledb_attr("a", type = "INT32")

# Create the array schema with `sparse = FALSE`
sch <- tiledb_array_schema(dom, a, sparse = FALSE, ctx = ctx)

# Create the array on disk (it will initially be empty).
# Observe that the encryption key is passed into
# `encryption_key`. This indicates that the array will
# utilize encryption.
cat("Creating array...")
arr <- tiledb_array_create(array_uri, sch)

Populate the TileDB array with a 2D input array, like in the unencrypted case.

  • Python
  • R
# Prepare some data in a NumPy array
data = np.array(
    [[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16]], dtype=np.int32
)

# Write data to the array.
# This time you need to pass the encryption key when
# opening the array, otherwise you will get an error.
with tiledb.open(array_uri, "w", key=encryption_key) as A:
    A[:] = data
# Prepare some data in an array
data <- t(array(1:16, dim = c(4, 4)))

# Open the array for writing and write data to the array
arr <- tiledb_array(
  uri = array_uri,
  query_type = "WRITE",
  ctx = ctx,
  return_as = "data.frame"
)
arr[] <- data

# Close the array
arr <- tiledb_array_close(arr)

Now read the data in the array:

  • Python
  • R
# Open the array in read mode.
# This time you need to pass the encryption key when
# opening the array, otherwise you will get an error.
A = tiledb.open(array_uri, "r", key=encryption_key)

# Read the entire array
print(A[:])

# Close the array
A.close()
OrderedDict({'a': array([[ 1,  2,  3,  4],
       [ 5,  6,  7,  8],
       [ 9, 10, 11, 12],
       [13, 14, 15, 16]], dtype=int32)})
arr <- tiledb_array(
  array_uri,
  query_type = "READ",
  ctx = ctx,
  return_as = "data.frame"
)

ints <- arr[]
print(ints)

# Be sure to close the array
invisible(tiledb_array_close(arr))
   d1 d2  a
1   1  1  1
2   2  1  5
3   3  1  9
4   4  1 13
5   1  2  2
6   2  2  6
7   3  2 10
8   4  2 14
9   1  3  3
10  2  3  7
11  3  3 11
12  4  3 15
13  1  4  4
14  2  4  8
15  3  4 12
16  4  4 16

Clean up in the end by deleting the array.

  • Python
  • R
# Delete the array
if os.path.exists(array_uri):
    shutil.rmtree(array_uri)
if (dir.exists(array_uri)) {
  unlink(array_uri, recursive = TRUE)
}
Compression
Data Layout