1. Structure
  2. AI & ML
  3. Vector Search
  4. Tutorials
  5. Basics
  6. Updates
  • Home
  • What is TileDB?
  • Get Started
  • Explore Content
  • Accounts
    • Individual Accounts
      • Apply for the Free Tier
      • Profile
        • Overview
        • Cloud Credentials
        • Storage Paths
        • REST API Tokens
        • Credits
    • Organization Admins
      • Create an Organization
      • Profile
        • Overview
        • Members
        • Cloud Credentials
        • Storage Paths
        • Billing
      • API Tokens
    • Organization Members
      • Organization Invitations
      • Profile
        • Overview
        • Members
        • Cloud Credentials
        • Storage Paths
        • Billing
      • API Tokens
  • Catalog
    • Introduction
    • Data
      • Arrays
      • Tables
      • Single-Cell (SOMA)
      • Genomics (VCF)
      • Biomedical Imaging
      • Vector Search
      • Files
    • Code
      • Notebooks
      • Dashboards
      • User-Defined Functions
      • Task Graphs
      • ML Models
    • Groups
    • Marketplace
    • Search
  • Collaborate
    • Introduction
    • Organizations
    • Access Control
      • Introduction
      • Share Assets
      • Asset Permissions
      • Public Assets
    • Logging
    • Marketplace
  • Analyze
    • Introduction
    • Slice Data
    • Multi-Region Redirection
    • Notebooks
      • Launch a Notebook
      • Usage
      • Widgets
      • Notebook Image Dependencies
    • Dashboards
      • Dashboards
      • Streamlit
    • Preview
    • User-Defined Functions
    • Task Graphs
    • Serverless SQL
    • Monitor
      • Task Log
      • Task Graph Log
  • Scale
    • Introduction
    • Task Graphs
    • API Usage
  • Structure
    • Why Structure Is Important
    • Arrays
      • Introduction
      • Quickstart
      • Foundation
        • Array Data Model
        • Key Concepts
          • Storage
            • Arrays
            • Dimensions
            • Attributes
            • Cells
            • Domain
            • Tiles
            • Data Layout
            • Compression
            • Encryption
            • Tile Filters
            • Array Schema
            • Schema Evolution
            • Fragments
            • Fragment Metadata
            • Commits
            • Indexing
            • Array Metadata
            • Datetimes
            • Groups
            • Object Stores
          • Compute
            • Writes
            • Deletions
            • Consolidation
            • Vacuuming
            • Time Traveling
            • Reads
            • Query Conditions
            • Aggregates
            • User-Defined Functions
            • Distributed Compute
            • Concurrency
            • Parallelism
        • Storage Format Spec
      • Tutorials
        • Basics
          • Basic Dense Array
          • Basic Sparse Array
          • Array Metadata
          • Compression
          • Encryption
          • Data Layout
          • Tile Filters
          • Datetimes
          • Multiple Attributes
          • Variable-Length Attributes
          • String Dimensions
          • Nullable Attributes
          • Multi-Range Reads
          • Query Conditions
          • Aggregates
          • Deletions
          • Catching Errors
          • Configuration
          • Basic S3 Example
          • Basic TileDB Cloud
          • fromDataFrame
          • Palmer Penguins
        • Advanced
          • Schema Evolution
          • Advanced Writes
            • Write at a Timestamp
            • Get Fragment Info
            • Consolidation
              • Fragments
              • Fragment List
              • Consolidation Plan
              • Commits
              • Fragment Metadata
              • Array Metadata
            • Vacuuming
              • Fragments
              • Commits
              • Fragment Metadata
              • Array Metadata
          • Advanced Reads
            • Get Fragment Info
            • Time Traveling
              • Introduction
              • Fragments
              • Array Metadata
              • Schema Evolution
          • Array Upgrade
          • Backends
            • Amazon S3
            • Azure Blob Storage
            • Google Cloud Storage
            • MinIO
            • Lustre
          • Virtual Filesystem
          • User-Defined Functions
          • Distributed Compute
          • Result Estimation
          • Incomplete Queries
        • Management
          • Array Schema
          • Groups
          • Object Management
        • Performance
          • Summary of Factors
          • Dense vs. Sparse
          • Dimensions vs. Attributes
          • Compression
          • Tiling and Data Layout
          • Tuning Writes
          • Tuning Reads
      • API Reference
    • Tables
      • Introduction
      • Quickstart
      • Foundation
        • Data Model
        • Key Concepts
          • Indexes
          • Columnar Storage
          • Compression
          • Data Manipulation
          • Optimize Tables
          • ACID
          • Serverless SQL
          • SQL Connectors
          • Dataframes
          • CSV Ingestion
      • Tutorials
        • Basics
          • Ingestion with SQL
          • CSV Ingestion
          • Basic S3 Example
          • Running Locally
        • Advanced
          • Scalable Ingestion
          • Scalable Queries
      • API Reference
    • AI & ML
      • Vector Search
        • Introduction
        • Quickstart
        • Foundation
          • Data Model
          • Key Concepts
            • Vector Search
            • Vector Databases
            • Algorithms
            • Distance Metrics
            • Updates
            • Deployment Methods
            • Architecture
            • Distributed Compute
          • Storage Format Spec
        • Tutorials
          • Basics
            • Ingestion & Querying
            • Updates
            • Deletions
            • Basic S3 Example
            • Running Locally
          • Advanced
            • Versioning
            • Time Traveling
            • Consolidation
            • Distributed Compute
            • RAG LLM
            • LLM Memory
            • File Search
            • Image Search
            • Protein Search
          • Performance
        • API Reference
      • ML Models
        • Introduction
        • Quickstart
        • Foundation
          • Basics
          • Storage
          • Cloud Execution
          • Why TileDB for Machine Learning
        • Tutorials
          • Ingestion
            • Data Ingestion
              • Dense Datasets
              • Sparse Datasets
            • ML Model Ingestion
          • Management
            • Array Schema
            • Machine Learning: Groups
            • Time Traveling
    • Life Sciences
      • Single-cell
        • Introduction
        • Quickstart
        • Foundation
          • Data Model
          • Key Concepts
            • Data Structures
            • Use of Apache Arrow
            • Join IDs
            • State Management
            • TileDB Cloud URIs
          • SOMA API Specification
        • Tutorials
          • Data Ingestion
          • Bulk Ingestion Tutorial
          • Data Access
          • Distributed Compute
          • Basic S3 Example
          • Multi-Experiment Queries
          • Appending Data to a SOMA Experiment
          • Add New Measurements
          • SQL Queries
          • Running Locally
          • Shapes in TileDB-SOMA
          • Drug Discovery App
        • Spatial
          • Introduction
          • Foundation
            • Spatial Data Model
            • Data Structures
          • Tutorials
            • Spatial Data Ingestion
            • Access Spatial Data
            • Manage Coordinate Spaces
        • API Reference
      • Population Genomics
        • Introduction
        • Quickstart
        • Foundation
          • Data Model
          • Key Concepts
            • The N+1 Problem
            • Architecture
            • Arrays
            • Ingestion
            • Reads
            • Variant Statistics
            • Annotations
            • User-Defined Functions
            • Tables and SQL
            • Distributed Compute
          • Storage Format Spec
        • Tutorials
          • Basics
            • Basic Ingestion
            • Basic Queries
            • Export to VCF
            • Add New Samples
            • Deleting Samples
            • Basic S3 Example
            • Basic TileDB Cloud
          • Advanced
            • Scalable Ingestion
            • Scalable Queries
            • Query Transforms
            • Handling Large Queries
            • Annotations
              • Finding Annotations
              • Embedded Annotations
              • External Annotations
              • Annotation VCFs
              • Ingesting Annotations
            • Variant Statistics
            • Tables and SQL
            • User-Defined Functions
            • Sample Metadata
            • Split VCF
          • Performance
        • API Reference
          • Command Line Interface
          • Python API
          • Cloud API
      • Biomedical Imaging
        • Introduction
        • Foundation
          • Data Model
          • Key Concepts
            • Arrays
            • Ingestion
            • Reads
            • User Defined Functions
          • Storage Format Spec
        • Quickstart
        • Tutorials
          • Basics
            • Ingestion
            • Read
              • OpenSlide
              • TileDB-Py
          • Advanced
            • Batched Ingestion
            • Chunked Ingestion
            • Machine Learning
              • PyTorch
            • Napari
    • Files
  • API Reference
  • Self-Hosting
    • Installation
    • Upgrades
    • Administrative Tasks
    • Image Customization
      • Customize User-Defined Function Images
      • AWS ECR Container Registry
      • Customize Jupyter Notebook Images
    • Single Sign-On
      • Configure Single Sign-On
      • OpenID Connect
      • Okta SCIM
      • Microsoft Entra
  • Glossary

On this page

  • Setup
  • Append single vectors
  • Update existing vectors
  • Batch updates
  • Clean up
  • What’s next?
  1. Structure
  2. AI & ML
  3. Vector Search
  4. Tutorials
  5. Basics
  6. Updates

Update Vector Index Data

ai/ml
vector search
tutorials
updates
You can update vector data using TileDB-Vector-Search, either single vectors or multiple vectors in a batch.
How to run this tutorial

We recommend running this tutorial, as well as the other various tutorials in the Tutorials section, inside TileDB Cloud. This will allow you to quickly experiment avoiding all the installation, deployment, and configuration hassles. Sign up for the free tier, spin up a TileDB Cloud notebook with a Python kernel, and follow the tutorial instructions. If you wish to learn how to run tutorials locally on your machine, read the Tutorials: Running Locally tutorial.

This tutorial shows you how to update a vector index, either by incrementally appending new vectors or updating existing vectors one by one, or appending/updating multiple vectors in a batch.

For more background theory on how TileDB-Vector-Search implements updates, read the Key Concepts: Vector Index Updates section.

Setup

First, import the appropriate libraries, set the index URI, and delete any previously created data.

# Import necessary libraries
import os
import shutil

import numpy as np
import tiledb.vector_search as vs

# Set the index URI for this tutorial
index_uri = os.path.expanduser("~/updates")

# Clean up previous data
if os.path.exists(index_uri):
    shutil.rmtree(index_uri)

Next, create an empty IVF_FLAT index.

# Create an index, where the dimensionality of each vector is 3,
# the type of the vector values is float32, and the index will
# use 3 partitions.
index = vs.ivf_flat_index.create(
    uri=index_uri, dimensions=3, partitions=3, vector_type=np.dtype(np.float32)
)

Query the index and note that TileDB-Vector-Search returns no results, as you have not inserted any vectors yet.

# Create a query
query_vector = np.array([[2, 2, 2]], dtype=np.float32)

# Search for its 3 nearest neigbors in the index,
# looking into 3 partitions.
result_d, result_i = index.query(query_vector, k=3, nprobe=3)
if result_i[0][0] == vs.index.MAX_UINT64:
    print("No results")
No results

Append single vectors

Now, add a set of vectors to the index:

# Apply a set of appends to the index, adding one vector at a time
index.update(vector=np.array([0, 0, 0], dtype=np.dtype(np.float32)), external_id=0)
index.update(vector=np.array([1, 1, 1], dtype=np.dtype(np.float32)), external_id=1)
index.update(vector=np.array([2, 2, 2], dtype=np.dtype(np.float32)), external_id=2)
index.update(vector=np.array([3, 3, 3], dtype=np.dtype(np.float32)), external_id=3)
index.update(vector=np.array([4, 4, 4], dtype=np.dtype(np.float32)), external_id=4)

Query the index again, and observe the three nearest neighbors (2, 3, and 1) to the original query vector:

# Perform the query again
result_d, result_i = index.query(query_vector, k=3, nprobe=3)
print("Result vector ids:\n")
print(result_i)
print("\nResult vector distances:\n")
print(result_d)
Result vector ids:

[[2 3 1]]

Result vector distances:

[[0. 3. 3.]]

Update existing vectors

You can also update an existing vector with the .update() method. Modify the values of vectors with external ids 1 and 2:

# Update existing vectors, by providing their external_id values
index.update(
    vector=np.array([10, 10, 10], dtype=np.dtype(np.float32)),
    external_id=1,
)
index.update(
    vector=np.array([11, 11, 11], dtype=np.dtype(np.float32)),
    external_id=2,
)

Query the index again and observe that the three nearest neighbors are now 3, 4, and 0.

# Perform the query again, and see that the result changes
result_d, result_i = index.query(query_vector, k=3, nprobe=3)
print("Result vector ids:\n")
print(result_i)
print("\nResult vector distances:\n")
print(result_d)
Result vector ids:

[[3 4 0]]

Result vector distances:

[[ 3. 12. 12.]]

Batch updates

You can update vectors in bulk using the .update_batch() method. Put the original vector values back for vectors with external ids 1 and 2:

# You can also update multiple vectors in a batch
update_vectors = np.empty([2], dtype=object)
update_vectors[0] = np.array([1, 1, 1], dtype=np.dtype(np.float32))
update_vectors[1] = np.array([2, 2, 2], dtype=np.dtype(np.float32))
index.update_batch(vectors=update_vectors, external_ids=np.array([1, 2]))

Query the index again and observe that the result is the same as before, namely 2, 3, and 1.

# Perform the query again, and see that the result changes again
result_d, result_i = index.query(query_vector, k=3, nprobe=3)
print("Result vector ids:\n")
print(result_i)
print("\nResult vector distances:\n")
print(result_d)
Result vector ids:

[[2 3 1]]

Result vector distances:

[[0. 3. 3.]]

Clean up

Clean up in the end by removing the index:

# Clean up
if os.path.exists(index_uri):
    shutil.rmtree(index_uri)

What’s next?

You can learn how to perform deletions in your vector index. If you are searching for more advanced tutorials, you should learn about:

  • Versioning
  • Time traveling
  • Consolidation
Ingestion & Querying
Deletions