1. Structure
  2. Arrays
  3. Tutorials
  4. Basics
  5. Basic TileDB Cloud
  • Home
  • What is TileDB?
  • Get Started
  • Explore Content
  • Accounts
    • Individual Accounts
      • Apply for the Free Tier
      • Profile
        • Overview
        • Cloud Credentials
        • Storage Paths
        • REST API Tokens
        • Credits
    • Organization Admins
      • Create an Organization
      • Profile
        • Overview
        • Members
        • Cloud Credentials
        • Storage Paths
        • Billing
      • API Tokens
    • Organization Members
      • Organization Invitations
      • Profile
        • Overview
        • Members
        • Cloud Credentials
        • Storage Paths
        • Billing
      • API Tokens
  • Catalog
    • Introduction
    • Data
      • Arrays
      • Tables
      • Single-Cell (SOMA)
      • Genomics (VCF)
      • Biomedical Imaging
      • Vector Search
      • Files
    • Code
      • Notebooks
      • Dashboards
      • User-Defined Functions
      • Task Graphs
      • ML Models
    • Groups
    • Marketplace
    • Search
  • Collaborate
    • Introduction
    • Organizations
    • Access Control
      • Introduction
      • Share Assets
      • Asset Permissions
      • Public Assets
    • Logging
    • Marketplace
  • Analyze
    • Introduction
    • Slice Data
    • Multi-Region Redirection
    • Notebooks
      • Launch a Notebook
      • Usage
      • Widgets
      • Notebook Image Dependencies
    • Dashboards
      • Dashboards
      • Streamlit
    • Preview
    • User-Defined Functions
    • Task Graphs
    • Serverless SQL
    • Monitor
      • Task Log
      • Task Graph Log
  • Scale
    • Introduction
    • Task Graphs
    • API Usage
  • Structure
    • Why Structure Is Important
    • Arrays
      • Introduction
      • Quickstart
      • Foundation
        • Array Data Model
        • Key Concepts
          • Storage
            • Arrays
            • Dimensions
            • Attributes
            • Cells
            • Domain
            • Tiles
            • Data Layout
            • Compression
            • Encryption
            • Tile Filters
            • Array Schema
            • Schema Evolution
            • Fragments
            • Fragment Metadata
            • Commits
            • Indexing
            • Array Metadata
            • Datetimes
            • Groups
            • Object Stores
          • Compute
            • Writes
            • Deletions
            • Consolidation
            • Vacuuming
            • Time Traveling
            • Reads
            • Query Conditions
            • Aggregates
            • User-Defined Functions
            • Distributed Compute
            • Concurrency
            • Parallelism
        • Storage Format Spec
      • Tutorials
        • Basics
          • Basic Dense Array
          • Basic Sparse Array
          • Array Metadata
          • Compression
          • Encryption
          • Data Layout
          • Tile Filters
          • Datetimes
          • Multiple Attributes
          • Variable-Length Attributes
          • String Dimensions
          • Nullable Attributes
          • Multi-Range Reads
          • Query Conditions
          • Aggregates
          • Deletions
          • Catching Errors
          • Configuration
          • Basic S3 Example
          • Basic TileDB Cloud
          • fromDataFrame
          • Palmer Penguins
        • Advanced
          • Schema Evolution
          • Advanced Writes
            • Write at a Timestamp
            • Get Fragment Info
            • Consolidation
              • Fragments
              • Fragment List
              • Consolidation Plan
              • Commits
              • Fragment Metadata
              • Array Metadata
            • Vacuuming
              • Fragments
              • Commits
              • Fragment Metadata
              • Array Metadata
          • Advanced Reads
            • Get Fragment Info
            • Time Traveling
              • Introduction
              • Fragments
              • Array Metadata
              • Schema Evolution
          • Array Upgrade
          • Backends
            • Amazon S3
            • Azure Blob Storage
            • Google Cloud Storage
            • MinIO
            • Lustre
          • Virtual Filesystem
          • User-Defined Functions
          • Distributed Compute
          • Result Estimation
          • Incomplete Queries
        • Management
          • Array Schema
          • Groups
          • Object Management
        • Performance
          • Summary of Factors
          • Dense vs. Sparse
          • Dimensions vs. Attributes
          • Compression
          • Tiling and Data Layout
          • Tuning Writes
          • Tuning Reads
      • API Reference
    • Tables
      • Introduction
      • Quickstart
      • Foundation
        • Data Model
        • Key Concepts
          • Indexes
          • Columnar Storage
          • Compression
          • Data Manipulation
          • Optimize Tables
          • ACID
          • Serverless SQL
          • SQL Connectors
          • Dataframes
          • CSV Ingestion
      • Tutorials
        • Basics
          • Ingestion with SQL
          • CSV Ingestion
          • Basic S3 Example
          • Running Locally
        • Advanced
          • Scalable Ingestion
          • Scalable Queries
      • API Reference
    • AI & ML
      • Vector Search
        • Introduction
        • Quickstart
        • Foundation
          • Data Model
          • Key Concepts
            • Vector Search
            • Vector Databases
            • Algorithms
            • Distance Metrics
            • Updates
            • Deployment Methods
            • Architecture
            • Distributed Compute
          • Storage Format Spec
        • Tutorials
          • Basics
            • Ingestion & Querying
            • Updates
            • Deletions
            • Basic S3 Example
            • Running Locally
          • Advanced
            • Versioning
            • Time Traveling
            • Consolidation
            • Distributed Compute
            • RAG LLM
            • LLM Memory
            • File Search
            • Image Search
            • Protein Search
          • Performance
        • API Reference
      • ML Models
        • Introduction
        • Quickstart
        • Foundation
          • Basics
          • Storage
          • Cloud Execution
          • Why TileDB for Machine Learning
        • Tutorials
          • Ingestion
            • Data Ingestion
              • Dense Datasets
              • Sparse Datasets
            • ML Model Ingestion
          • Management
            • Array Schema
            • Machine Learning: Groups
            • Time Traveling
    • Life Sciences
      • Single-cell
        • Introduction
        • Quickstart
        • Foundation
          • Data Model
          • Key Concepts
            • Data Structures
            • Use of Apache Arrow
            • Join IDs
            • State Management
            • TileDB Cloud URIs
          • SOMA API Specification
        • Tutorials
          • Data Ingestion
          • Bulk Ingestion Tutorial
          • Data Access
          • Distributed Compute
          • Basic S3 Example
          • Multi-Experiment Queries
          • Appending Data to a SOMA Experiment
          • Add New Measurements
          • SQL Queries
          • Running Locally
          • Shapes in TileDB-SOMA
          • Drug Discovery App
        • Spatial
          • Introduction
          • Foundation
            • Spatial Data Model
            • Data Structures
          • Tutorials
            • Spatial Data Ingestion
            • Access Spatial Data
            • Manage Coordinate Spaces
        • API Reference
      • Population Genomics
        • Introduction
        • Quickstart
        • Foundation
          • Data Model
          • Key Concepts
            • The N+1 Problem
            • Architecture
            • Arrays
            • Ingestion
            • Reads
            • Variant Statistics
            • Annotations
            • User-Defined Functions
            • Tables and SQL
            • Distributed Compute
          • Storage Format Spec
        • Tutorials
          • Basics
            • Basic Ingestion
            • Basic Queries
            • Export to VCF
            • Add New Samples
            • Deleting Samples
            • Basic S3 Example
            • Basic TileDB Cloud
          • Advanced
            • Scalable Ingestion
            • Scalable Queries
            • Query Transforms
            • Handling Large Queries
            • Annotations
              • Finding Annotations
              • Embedded Annotations
              • External Annotations
              • Annotation VCFs
              • Ingesting Annotations
            • Variant Statistics
            • Tables and SQL
            • User-Defined Functions
            • Sample Metadata
            • Split VCF
          • Performance
        • API Reference
          • Command Line Interface
          • Python API
          • Cloud API
      • Biomedical Imaging
        • Introduction
        • Foundation
          • Data Model
          • Key Concepts
            • Arrays
            • Ingestion
            • Reads
            • User Defined Functions
          • Storage Format Spec
        • Quickstart
        • Tutorials
          • Basics
            • Ingestion
            • Read
              • OpenSlide
              • TileDB-Py
          • Advanced
            • Batched Ingestion
            • Chunked Ingestion
            • Machine Learning
              • PyTorch
            • Napari
    • Files
  • API Reference
  • Self-Hosting
    • Installation
    • Upgrades
    • Administrative Tasks
    • Image Customization
      • Customize User-Defined Function Images
      • AWS ECR Container Registry
      • Customize Jupyter Notebook Images
    • Single Sign-On
      • Configure Single Sign-On
      • OpenID Connect
      • Okta SCIM
      • Microsoft Entra
  • Glossary
  1. Structure
  2. Arrays
  3. Tutorials
  4. Basics
  5. Basic TileDB Cloud

Access Arrays on TileDB Cloud

arrays
tutorials
python
remote
Learn how to interact with arrays on TileDB Cloud programmatically.
How to run this tutorial

You can run this tutorial only on TileDB Cloud. However, TileDB Cloud has a free tier. We strongly recommend that you sign up and run everything there, as that requires no installations or deployment.

This tutorial shows basic usage of arrays on TileDB Cloud. It assumes you have already completed the Get Started section.

Start by setting some environment variables. It can look something like this:

  • Python
import os

os.environ["S3_BUCKET"] = "s3://<your_bucket_name>"
os.environ["TILEDB_ACCOUNT"] = "<your_tiledb_account_username>"

Next, fetch the environment variables you created and define the global context:

  • Python
import os

import tiledb

# TileDB automatically sets the TILEDB_REST_TOKEN variable in your
# running server.
tiledb_token = os.environ["TILEDB_REST_TOKEN"]

# You should set the appropriate environment variables with your keys.
# Get the keys from the environment variables.
tiledb_account = os.environ["TILEDB_ACCOUNT"]

# Get the bucket from environment variables
s3_bucket = os.environ["S3_BUCKET"]

# Define a configuration object and set the default context.
# This context initialization can be performed only once.
cfg = tiledb.Config(
    {
        "rest.token": tiledb_token,
    }
)
tiledb.default_ctx(cfg)

The rest of the tutorial is almost the same as the Tutorials: Basic Dense section, whereas you can create, write, and read any array in the same manner after setting up your TileDB credentials as shown earlier.

Import the necessary libraries, set the array URI (that is, its path, which in this tutorial will be on local storage), and delete any previously created arrays with the same name.

  • Python
# Import necessary libraries
import numpy as np

# Set array URI
array_name = "basic_tiledb_cloud"
array_uri = "tiledb://" + tiledb_account + "/" + array_name

# Delete array if it already exists
if tiledb.array_exists(array_uri):
    tiledb.Array.delete_array(array_uri)

Next, create the array by specifying its schema. The only difference between TileDB Cloud and TileDB Open-source when creating and registering arrays is that the TileDB Cloud URI should be of the form: tiledb://<account>/s3://<bucket>/<array_name>. TileDB Cloud understands that you are trying to create an array in S3 URI s3://<bucket>/<array_name> and register it under <account>. After you create and register the array, you can access the array as tiledb://<account>/<array_name>.

  • Python
# Create the two dimensions
d1 = tiledb.Dim(name="d1", domain=(1, 4), tile=2, dtype=np.int32)
d2 = tiledb.Dim(name="d2", domain=(1, 4), tile=2, dtype=np.int32)

# Create a domain using the two dimensions
dom = tiledb.Domain(d1, d2)

# Create an attribute
a = tiledb.Attr(name="a", dtype=np.int32)

# Create the array schema, setting `sparse=False` to indicate a dense array.
sch = tiledb.ArraySchema(domain=dom, sparse=False, attrs=[a])

# NOTE: This is the only special thing about TileDB Cloud when
# creating and registering arrays: the URI should be of the form:
# tiledb://<account>/s3://<bucket>/<array_name>
# TileDB Cloud understands that you are trying to create an array in
# s3://<bucket>/<array_name> and register it under <account>.
# After the array is created and registered, it will be accessible
# as just tiledb://<account>/<array_name>
array_uri_reg = "tiledb://" + tiledb_account + "/" + s3_bucket + "/" + array_name

# Create the array on disk (it will initially be empty)
tiledb.Array.create(array_uri_reg, sch)

Populate the array with a 2-dimensional array. Observe that now you use the array URI in the form tiledb://<account>/<array_name>.

  • Python
# Prepare some data in a NumPy array
data = np.array(
    [[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16]], dtype=np.int32
)

# Write data to the array
with tiledb.open(array_uri, "w") as A:
    A[:] = data

Read the data by using the slicing methods supported in TileDB. Again, you access the array with URI tiledb://<account>/<array_name>.

  • Python
# Open the array in read mode
A = tiledb.open(array_uri, "r")

# Show the entire array
print("Entire array: ")
print(A[:])
print("\n")

# Slice a portion of the array, which is useful
# when the arrays are too big to fit in main memory
print("Slice [1:3), [1:2): ")
print(A[1:3, 1:2]["a"])

# Remember to close the array
A.close()
Entire array: 
OrderedDict([('a', array([[ 1,  2,  3,  4],
       [ 5,  6,  7,  8],
       [ 9, 10, 11, 12],
       [13, 14, 15, 16]], dtype=int32))])


Slice [1:3), [1:2): 
[[1]
 [5]]

Clean up in the end by deleting the array. Observet that the standard TileDB object management functions work directly with tiledb:// URIs (that is, TileDB Cloud arrays).

  • Python
# Delete the array
if tiledb.array_exists(array_uri):
    tiledb.Array.delete_array(array_uri)
Basic S3 Example
fromDataFrame