1. Structure
  2. AI & ML
  3. ML Models
  4. Tutorials
  5. Management
  6. Array Schema
  • Home
  • What is TileDB?
  • Get Started
  • Explore Content
  • Accounts
    • Individual Accounts
      • Apply for the Free Tier
      • Profile
        • Overview
        • Cloud Credentials
        • Storage Paths
        • REST API Tokens
        • Credits
    • Organization Admins
      • Create an Organization
      • Profile
        • Overview
        • Members
        • Cloud Credentials
        • Storage Paths
        • Billing
      • API Tokens
    • Organization Members
      • Organization Invitations
      • Profile
        • Overview
        • Members
        • Cloud Credentials
        • Storage Paths
        • Billing
      • API Tokens
  • Catalog
    • Introduction
    • Data
      • Arrays
      • Tables
      • Single-Cell (SOMA)
      • Genomics (VCF)
      • Biomedical Imaging
      • Vector Search
      • Files
    • Code
      • Notebooks
      • Dashboards
      • User-Defined Functions
      • Task Graphs
      • ML Models
    • Groups
    • Marketplace
    • Search
  • Collaborate
    • Introduction
    • Organizations
    • Access Control
      • Introduction
      • Share Assets
      • Asset Permissions
      • Public Assets
    • Logging
    • Marketplace
  • Analyze
    • Introduction
    • Slice Data
    • Multi-Region Redirection
    • Notebooks
      • Launch a Notebook
      • Usage
      • Widgets
      • Notebook Image Dependencies
    • Dashboards
      • Dashboards
      • Streamlit
    • Preview
    • User-Defined Functions
    • Task Graphs
    • Serverless SQL
    • Monitor
      • Task Log
      • Task Graph Log
  • Scale
    • Introduction
    • Task Graphs
    • API Usage
  • Structure
    • Why Structure Is Important
    • Arrays
      • Introduction
      • Quickstart
      • Foundation
        • Array Data Model
        • Key Concepts
          • Storage
            • Arrays
            • Dimensions
            • Attributes
            • Cells
            • Domain
            • Tiles
            • Data Layout
            • Compression
            • Encryption
            • Tile Filters
            • Array Schema
            • Schema Evolution
            • Fragments
            • Fragment Metadata
            • Commits
            • Indexing
            • Array Metadata
            • Datetimes
            • Groups
            • Object Stores
          • Compute
            • Writes
            • Deletions
            • Consolidation
            • Vacuuming
            • Time Traveling
            • Reads
            • Query Conditions
            • Aggregates
            • User-Defined Functions
            • Distributed Compute
            • Concurrency
            • Parallelism
        • Storage Format Spec
      • Tutorials
        • Basics
          • Basic Dense Array
          • Basic Sparse Array
          • Array Metadata
          • Compression
          • Encryption
          • Data Layout
          • Tile Filters
          • Datetimes
          • Multiple Attributes
          • Variable-Length Attributes
          • String Dimensions
          • Nullable Attributes
          • Multi-Range Reads
          • Query Conditions
          • Aggregates
          • Deletions
          • Catching Errors
          • Configuration
          • Basic S3 Example
          • Basic TileDB Cloud
          • fromDataFrame
          • Palmer Penguins
        • Advanced
          • Schema Evolution
          • Advanced Writes
            • Write at a Timestamp
            • Get Fragment Info
            • Consolidation
              • Fragments
              • Fragment List
              • Consolidation Plan
              • Commits
              • Fragment Metadata
              • Array Metadata
            • Vacuuming
              • Fragments
              • Commits
              • Fragment Metadata
              • Array Metadata
          • Advanced Reads
            • Get Fragment Info
            • Time Traveling
              • Introduction
              • Fragments
              • Array Metadata
              • Schema Evolution
          • Array Upgrade
          • Backends
            • Amazon S3
            • Azure Blob Storage
            • Google Cloud Storage
            • MinIO
            • Lustre
          • Virtual Filesystem
          • User-Defined Functions
          • Distributed Compute
          • Result Estimation
          • Incomplete Queries
        • Management
          • Array Schema
          • Groups
          • Object Management
        • Performance
          • Summary of Factors
          • Dense vs. Sparse
          • Dimensions vs. Attributes
          • Compression
          • Tiling and Data Layout
          • Tuning Writes
          • Tuning Reads
      • API Reference
    • Tables
      • Introduction
      • Quickstart
      • Foundation
        • Data Model
        • Key Concepts
          • Indexes
          • Columnar Storage
          • Compression
          • Data Manipulation
          • Optimize Tables
          • ACID
          • Serverless SQL
          • SQL Connectors
          • Dataframes
          • CSV Ingestion
      • Tutorials
        • Basics
          • Ingestion with SQL
          • CSV Ingestion
          • Basic S3 Example
          • Running Locally
        • Advanced
          • Scalable Ingestion
          • Scalable Queries
      • API Reference
    • AI & ML
      • Vector Search
        • Introduction
        • Quickstart
        • Foundation
          • Data Model
          • Key Concepts
            • Vector Search
            • Vector Databases
            • Algorithms
            • Distance Metrics
            • Updates
            • Deployment Methods
            • Architecture
            • Distributed Compute
          • Storage Format Spec
        • Tutorials
          • Basics
            • Ingestion & Querying
            • Updates
            • Deletions
            • Basic S3 Example
            • Running Locally
          • Advanced
            • Versioning
            • Time Traveling
            • Consolidation
            • Distributed Compute
            • RAG LLM
            • LLM Memory
            • File Search
            • Image Search
            • Protein Search
          • Performance
        • API Reference
      • ML Models
        • Introduction
        • Quickstart
        • Foundation
          • Basics
          • Storage
          • Cloud Execution
          • Why TileDB for Machine Learning
        • Tutorials
          • Ingestion
            • Data Ingestion
              • Dense Datasets
              • Sparse Datasets
            • ML Model Ingestion
          • Management
            • Array Schema
            • Machine Learning: Groups
            • Time Traveling
    • Life Sciences
      • Single-cell
        • Introduction
        • Quickstart
        • Foundation
          • Data Model
          • Key Concepts
            • Data Structures
            • Use of Apache Arrow
            • Join IDs
            • State Management
            • TileDB Cloud URIs
          • SOMA API Specification
        • Tutorials
          • Data Ingestion
          • Bulk Ingestion Tutorial
          • Data Access
          • Distributed Compute
          • Basic S3 Example
          • Multi-Experiment Queries
          • Appending Data to a SOMA Experiment
          • Add New Measurements
          • SQL Queries
          • Running Locally
          • Shapes in TileDB-SOMA
          • Drug Discovery App
        • Spatial
          • Introduction
          • Foundation
            • Spatial Data Model
            • Data Structures
          • Tutorials
            • Spatial Data Ingestion
            • Access Spatial Data
            • Manage Coordinate Spaces
        • API Reference
      • Population Genomics
        • Introduction
        • Quickstart
        • Foundation
          • Data Model
          • Key Concepts
            • The N+1 Problem
            • Architecture
            • Arrays
            • Ingestion
            • Reads
            • Variant Statistics
            • Annotations
            • User-Defined Functions
            • Tables and SQL
            • Distributed Compute
          • Storage Format Spec
        • Tutorials
          • Basics
            • Basic Ingestion
            • Basic Queries
            • Export to VCF
            • Add New Samples
            • Deleting Samples
            • Basic S3 Example
            • Basic TileDB Cloud
          • Advanced
            • Scalable Ingestion
            • Scalable Queries
            • Query Transforms
            • Handling Large Queries
            • Annotations
              • Finding Annotations
              • Embedded Annotations
              • External Annotations
              • Annotation VCFs
              • Ingesting Annotations
            • Variant Statistics
            • Tables and SQL
            • User-Defined Functions
            • Sample Metadata
            • Split VCF
          • Performance
        • API Reference
          • Command Line Interface
          • Python API
          • Cloud API
      • Biomedical Imaging
        • Introduction
        • Foundation
          • Data Model
          • Key Concepts
            • Arrays
            • Ingestion
            • Reads
            • User Defined Functions
          • Storage Format Spec
        • Quickstart
        • Tutorials
          • Basics
            • Ingestion
            • Read
              • OpenSlide
              • TileDB-Py
          • Advanced
            • Batched Ingestion
            • Chunked Ingestion
            • Machine Learning
              • PyTorch
            • Napari
    • Files
  • API Reference
  • Self-Hosting
    • Installation
    • Upgrades
    • Administrative Tasks
    • Image Customization
      • Customize User-Defined Function Images
      • AWS ECR Container Registry
      • Customize Jupyter Notebook Images
    • Single Sign-On
      • Configure Single Sign-On
      • OpenID Connect
      • Okta SCIM
      • Microsoft Entra
  • Glossary

On this page

  • Inspect the array schema
  • Inspect the domain
  • Inspect array dimensions
  • Inspect attributes
  • Inspect filters
  1. Structure
  2. AI & ML
  3. ML Models
  4. Tutorials
  5. Management
  6. Array Schema

Inspect ML Model Schema Members

ai/ml
machine learning (ml)
tutorials
python
schema
Just like TileDB arrays, you can inspect various aspects of a ML model schema, including its members, domain, attributes, and filters.

This guide shows how to inspect the array schema, domain, dimensions, attributes, and filters of Machine Learning (ML) asset.

Note

The following tutorial assumes that you have successfully completed the tutorials for ingesting ML datasets and models in TileDB.

Inspect the array schema

You can get the schema of an existing array as follows:

# load the schema directly
# optionally pass `key=...` for encrypted arrays
schema = tiledb.ArraySchema.load(array_name)

# or access the schema from an open array object
A = tiledb.Array(array_name)
schema = A.schema

You can also inspect the different array schema members:

# ... get array schema

# Check if array is sparse
schema.sparse

# Get tile capacity
schema.capacity

# Cell and tile order return 'row-major', 'col-major', or 'global'
# Get tile order
schema.tile_order

# Get cell order
schema.cell_order

# Get coordinates filter list
coords_filters = schema.coords_filters

# Get offsets filter list
offsets_filters = schema.offsets_filters

# Get the array domain
domain = schema.domain

# Get number of attributes
attr_num = schema.nattr

# Get attribute by index (0 <= idx < attr_num)
attr = schema.attr(0)

# Check if the named attribute exists
schema.has_attr("features")

# Get attribute by name
attr = schema.attr("features")
None- Array type: dense
- Cell order: row-major
- Tile order: row-major
- Capacity: 10000
- Allows duplicates: false
- Coordinates filters: 1
  > ZSTD: COMPRESSION_LEVEL=-1
- Offsets filters: 1
  > ZSTD: COMPRESSION_LEVEL=-1
- Validity filters: 1
  > RLE: COMPRESSION_LEVEL=-1

### Dimension ###
- Name: dim_0
- Type: INT32
- Cell val num: 1
- Domain: [0, 59999]
- Tile extent: 64
- Filters: 0

### Dimension ###
- Name: dim_1
- Type: INT32
- Cell val num: 1
- Domain: [0, 27]
- Tile extent: 28
- Filters: 0

### Dimension ###
- Name: dim_2
- Type: INT32
- Cell val num: 1
- Domain: [0, 27]
- Tile extent: 28
- Filters: 0

### Attribute ###
- Name: features
- Type: UINT8
- Nullable: false
- Cell val num: 1
- Filters: 0
- Fill value: �
 

Inspect the domain

# ... get array schema
# ... get domain from schema

# Get the domain data type (i.e., the datatype of all dimensions)
# note: types are automatically converted to NumPy dtypes
domain_dtype = domain.dtype

# Get number of dimensions
dim_num = domain.ndim

# Get dimension by index (0 <= idx < dim_num)
dim = domain.dim(0)

# Get dimension by name
dim = domain.dim("dim_1")

# Check if domain has named dimension
domain.has_dim("dim_1")

# Print the domain in ASCII format
domain.dump()

Inspect array dimensions

# ... get array schema
# ... get domain
# ... get dimension by index

# Get dimension name
dim_name = dims[0].name

# Get dimension datatype
dim_dtype = dims[0].dtype

# Get dimension domain
dim_domain = dims[0].domain

# Get tile extent
tile_extent = dims[0].tile

# Get dimension filter list
filter_list = dims[0].filters

Inspect attributes

# ... create context
# ... get array schema
# ... get attribute by index or name

# Get attribute name
attr_name = attr.name

# Get attribute datatype
attr_dtype = attr.dtype

# Get filter list
filter_list = attr.filters

# Check if attribute is variable-length
var_length = attr.isvar

# Get number of values per cell
# note: for variable-length attributes, ncells == typemax(np.uint32)
num = attr.ncells

# Get datatype size (bytes) for this attribute
cell_size = attr.dtype.itemsize

Inspect filters

# ... get filter list

# Get number of filters
num_filters = len(filter_list)

print(len(filter_list))
# Get the maximum tile chunk size
max_chunk_size = filter_list.chunksize

# Get a filter by index (0 <= idx < num_filters)
filter = filter_list[0]

# Get filter type
filter.__class__

# Get filter option (depends on the filter: `filter.{option_name}`)
level = filter.level
Management
Machine Learning: Groups