1. Structure
  2. Life Sciences
  3. Biomedical Imaging
  4. Tutorials
  5. Advanced
  6. Batched Ingestion
  • Home
  • What is TileDB?
  • Get Started
  • Explore Content
  • Accounts
    • Individual Accounts
      • Apply for the Free Tier
      • Profile
        • Overview
        • Cloud Credentials
        • Storage Paths
        • REST API Tokens
        • Credits
    • Organization Admins
      • Create an Organization
      • Profile
        • Overview
        • Members
        • Cloud Credentials
        • Storage Paths
        • Billing
      • API Tokens
    • Organization Members
      • Organization Invitations
      • Profile
        • Overview
        • Members
        • Cloud Credentials
        • Storage Paths
        • Billing
      • API Tokens
  • Catalog
    • Introduction
    • Data
      • Arrays
      • Tables
      • Single-Cell (SOMA)
      • Genomics (VCF)
      • Biomedical Imaging
      • Vector Search
      • Files
    • Code
      • Notebooks
      • Dashboards
      • User-Defined Functions
      • Task Graphs
      • ML Models
    • Groups
    • Marketplace
    • Search
  • Collaborate
    • Introduction
    • Organizations
    • Access Control
      • Introduction
      • Share Assets
      • Asset Permissions
      • Public Assets
    • Logging
    • Marketplace
  • Analyze
    • Introduction
    • Slice Data
    • Multi-Region Redirection
    • Notebooks
      • Launch a Notebook
      • Usage
      • Widgets
      • Notebook Image Dependencies
    • Dashboards
      • Dashboards
      • Streamlit
    • Preview
    • User-Defined Functions
    • Task Graphs
    • Serverless SQL
    • Monitor
      • Task Log
      • Task Graph Log
  • Scale
    • Introduction
    • Task Graphs
    • API Usage
  • Structure
    • Why Structure Is Important
    • Arrays
      • Introduction
      • Quickstart
      • Foundation
        • Array Data Model
        • Key Concepts
          • Storage
            • Arrays
            • Dimensions
            • Attributes
            • Cells
            • Domain
            • Tiles
            • Data Layout
            • Compression
            • Encryption
            • Tile Filters
            • Array Schema
            • Schema Evolution
            • Fragments
            • Fragment Metadata
            • Commits
            • Indexing
            • Array Metadata
            • Datetimes
            • Groups
            • Object Stores
          • Compute
            • Writes
            • Deletions
            • Consolidation
            • Vacuuming
            • Time Traveling
            • Reads
            • Query Conditions
            • Aggregates
            • User-Defined Functions
            • Distributed Compute
            • Concurrency
            • Parallelism
        • Storage Format Spec
      • Tutorials
        • Basics
          • Basic Dense Array
          • Basic Sparse Array
          • Array Metadata
          • Compression
          • Encryption
          • Data Layout
          • Tile Filters
          • Datetimes
          • Multiple Attributes
          • Variable-Length Attributes
          • String Dimensions
          • Nullable Attributes
          • Multi-Range Reads
          • Query Conditions
          • Aggregates
          • Deletions
          • Catching Errors
          • Configuration
          • Basic S3 Example
          • Basic TileDB Cloud
          • fromDataFrame
          • Palmer Penguins
        • Advanced
          • Schema Evolution
          • Advanced Writes
            • Write at a Timestamp
            • Get Fragment Info
            • Consolidation
              • Fragments
              • Fragment List
              • Consolidation Plan
              • Commits
              • Fragment Metadata
              • Array Metadata
            • Vacuuming
              • Fragments
              • Commits
              • Fragment Metadata
              • Array Metadata
          • Advanced Reads
            • Get Fragment Info
            • Time Traveling
              • Introduction
              • Fragments
              • Array Metadata
              • Schema Evolution
          • Array Upgrade
          • Backends
            • Amazon S3
            • Azure Blob Storage
            • Google Cloud Storage
            • MinIO
            • Lustre
          • Virtual Filesystem
          • User-Defined Functions
          • Distributed Compute
          • Result Estimation
          • Incomplete Queries
        • Management
          • Array Schema
          • Groups
          • Object Management
        • Performance
          • Summary of Factors
          • Dense vs. Sparse
          • Dimensions vs. Attributes
          • Compression
          • Tiling and Data Layout
          • Tuning Writes
          • Tuning Reads
      • API Reference
    • Tables
      • Introduction
      • Quickstart
      • Foundation
        • Data Model
        • Key Concepts
          • Indexes
          • Columnar Storage
          • Compression
          • Data Manipulation
          • Optimize Tables
          • ACID
          • Serverless SQL
          • SQL Connectors
          • Dataframes
          • CSV Ingestion
      • Tutorials
        • Basics
          • Ingestion with SQL
          • CSV Ingestion
          • Basic S3 Example
          • Running Locally
        • Advanced
          • Scalable Ingestion
          • Scalable Queries
      • API Reference
    • AI & ML
      • Vector Search
        • Introduction
        • Quickstart
        • Foundation
          • Data Model
          • Key Concepts
            • Vector Search
            • Vector Databases
            • Algorithms
            • Distance Metrics
            • Updates
            • Deployment Methods
            • Architecture
            • Distributed Compute
          • Storage Format Spec
        • Tutorials
          • Basics
            • Ingestion & Querying
            • Updates
            • Deletions
            • Basic S3 Example
            • Running Locally
          • Advanced
            • Versioning
            • Time Traveling
            • Consolidation
            • Distributed Compute
            • RAG LLM
            • LLM Memory
            • File Search
            • Image Search
            • Protein Search
          • Performance
        • API Reference
      • ML Models
        • Introduction
        • Quickstart
        • Foundation
          • Basics
          • Storage
          • Cloud Execution
          • Why TileDB for Machine Learning
        • Tutorials
          • Ingestion
            • Data Ingestion
              • Dense Datasets
              • Sparse Datasets
            • ML Model Ingestion
          • Management
            • Array Schema
            • Machine Learning: Groups
            • Time Traveling
    • Life Sciences
      • Single-cell
        • Introduction
        • Quickstart
        • Foundation
          • Data Model
          • Key Concepts
            • Data Structures
            • Use of Apache Arrow
            • Join IDs
            • State Management
            • TileDB Cloud URIs
          • SOMA API Specification
        • Tutorials
          • Data Ingestion
          • Bulk Ingestion Tutorial
          • Data Access
          • Distributed Compute
          • Basic S3 Example
          • Multi-Experiment Queries
          • Appending Data to a SOMA Experiment
          • Add New Measurements
          • SQL Queries
          • Running Locally
          • Shapes in TileDB-SOMA
          • Drug Discovery App
        • Spatial
          • Introduction
          • Foundation
            • Spatial Data Model
            • Data Structures
          • Tutorials
            • Spatial Data Ingestion
            • Access Spatial Data
            • Manage Coordinate Spaces
        • API Reference
      • Population Genomics
        • Introduction
        • Quickstart
        • Foundation
          • Data Model
          • Key Concepts
            • The N+1 Problem
            • Architecture
            • Arrays
            • Ingestion
            • Reads
            • Variant Statistics
            • Annotations
            • User-Defined Functions
            • Tables and SQL
            • Distributed Compute
          • Storage Format Spec
        • Tutorials
          • Basics
            • Basic Ingestion
            • Basic Queries
            • Export to VCF
            • Add New Samples
            • Deleting Samples
            • Basic S3 Example
            • Basic TileDB Cloud
          • Advanced
            • Scalable Ingestion
            • Scalable Queries
            • Query Transforms
            • Handling Large Queries
            • Annotations
              • Finding Annotations
              • Embedded Annotations
              • External Annotations
              • Annotation VCFs
              • Ingesting Annotations
            • Variant Statistics
            • Tables and SQL
            • User-Defined Functions
            • Sample Metadata
            • Split VCF
          • Performance
        • API Reference
          • Command Line Interface
          • Python API
          • Cloud API
      • Biomedical Imaging
        • Introduction
        • Foundation
          • Data Model
          • Key Concepts
            • Arrays
            • Ingestion
            • Reads
            • User Defined Functions
          • Storage Format Spec
        • Quickstart
        • Tutorials
          • Basics
            • Ingestion
            • Read
              • OpenSlide
              • TileDB-Py
          • Advanced
            • Batched Ingestion
            • Chunked Ingestion
            • Machine Learning
              • PyTorch
            • Napari
    • Files
  • API Reference
  • Self-Hosting
    • Installation
    • Upgrades
    • Administrative Tasks
    • Image Customization
      • Customize User-Defined Function Images
      • AWS ECR Container Registry
      • Customize Jupyter Notebook Images
    • Single Sign-On
      • Configure Single Sign-On
      • OpenID Connect
      • Okta SCIM
      • Microsoft Entra
  • Glossary

On this page

  • Setup
  • Cloud client configuration
  • Ingestion storage paths
  • Batched ingestion
  1. Structure
  2. Life Sciences
  3. Biomedical Imaging
  4. Tutorials
  5. Advanced
  6. Batched Ingestion

Batched Ingestion of Biomedical Images

life sciences
biomedical imaging
tutorials
ingestion
s3
Learn How to ingest batches of biomedical images into TileDB.
How to run this tutorial

You can run this tutorial only on TileDB Cloud. However, TileDB Cloud has a free tier. We strongly recommend that you sign up and run everything there, as that requires no installations or deployment.

Efficiently handling massive collections of biomedical images, like those from high-resolution microscopy or large-scale medical scans, poses a significant challenge. This tutorial focuses on optimizing the ingestion of these images by using a technique called batched ingestion with task graphs in a cluster environment.

Imagine you’re a pathologist analyzing hundreds of tissue slides. Instead of examining each slide individually, you might group similar ones together for a more streamlined workflow. That’s essentially what batching does for data ingestion. It groups images into “batches” for more efficient processing.

Why is batching crucial for biomedical images?

  • Reduced upkeep: Processing images in batches minimizes the extra work needed for individual file transfers and computations, leading to faster processing times.
  • Optimized resources: Batching helps you tailor the image load to your cluster’s capacity, maximizing resource use and preventing bottlenecks.
  • Increased throughput: By processing multiple images concurrently within a batch, you can significantly increase how many images your pipeline can handle.

This tutorial will guide you through implementing batched ingestion for your biomedical images by using task graphs in a cluster environment. To explore how to build task graphs that efficiently handle batches of images, you can distribute work across multiple runners and optimize your ingestion pipeline.

Setup

While you can run this tutorial locally, note that this tutorial relies on remote resources to run correctly.

You must create a REST API token and create an environment variable named $TILEDB_REST_TOKEN set to the value of your generated token.

However, this is not necessary when running this notebook inside of a TileDB workspace where the API token is automatically generated and configured for you.

As a first step, you need to import the TileDB client library.

  • Python
import tiledb
from tiledb.cloud.bioimg.ingestion import ingest

Next, log in to TileDB.

  • Python
import os

import tiledb.cloud

tiledb.cloud.login(
    token=os.environ["TILEDB_REST_TOKEN"],
    host=os.environ["TILEDB_REST_API_SERVER_ADDRESS"],
)

Cloud client configuration

To configure the cloud client, you need to set up the following parameters:

  • Python
NAMESPACE = "TileDB-Inc"
ACCESS_CREDENTIALS_NAME = "tiledb-cloud-sandbox-role"
RESOURCES = {"cpu": "16", "memory": "60Gi"}
  • Namespace: The namespace where the DAG will run.
  • Access Credentials Name: Access Credentials Name (ACN) registered in TileDB (ARN type).
  • Resources: Configuration for nodes resources being used.

Ingestion storage paths

To ingest your data from S3, you need to declare one or more input files by providing either a source path on S3 or a list of S3 absolute paths.

Caution

While S3 storage appears to have folders, it uses a key-based object structure and has no notion of a directory like your local filesystem. To simulate a folder, ensure your source path ends with a trailing slash (/). This distinguishes between objects and “folders” within S3.

  • Python
source = "s3://tiledb-inc-demo-data/bioimg/TCIA/"
dest = "s3://tiledb-bioimg/demo/output/"

Batched ingestion

TileDB-BioImaging’s ingestion function offers extensive customization through a wide range of parameters, and the TileDB team is constantly adding more. For a comprehensive overview of available options and their usage, refer to the TileDB-BioImaging API documentation.

The ingestion function uses a num_of_batches parameter to optimize performance. This parameter enables parallel processing of your data by splitting your dataset into smaller batches and distributing them across multiple runners. This approach significantly enhances ingestion speed and efficiency, especially for large datasets.

  • Python
ingestion_args = {
    "source": source,
    "output": dest,
    "config": None,
    "resources": RESOURCES,
    "namespace": NAMESPACE,
    "acn": ACCESS_CREDENTIALS_NAME,
    "num_batches": 10,
    "chunked": True,
    "verbose": False,
    "register": True,
    "reader": "experimental",
}

After setting all the parameters, you can run the ingestion, with your preferred task-graph name.

  • Python
ingest(**ingestion_args, taskgraph_name="tiledb-academy-batched-tg-demo")
Advanced
Chunked Ingestion