1. Structure
  2. Arrays
  3. Foundation
  4. Key Concepts
  5. Storage
  6. Tiles
  • Home
  • What is TileDB?
  • Get Started
  • Explore Content
  • Accounts
    • Individual Accounts
      • Apply for the Free Tier
      • Profile
        • Overview
        • Cloud Credentials
        • Storage Paths
        • REST API Tokens
        • Credits
    • Organization Admins
      • Create an Organization
      • Profile
        • Overview
        • Members
        • Cloud Credentials
        • Storage Paths
        • Billing
      • API Tokens
    • Organization Members
      • Organization Invitations
      • Profile
        • Overview
        • Members
        • Cloud Credentials
        • Storage Paths
        • Billing
      • API Tokens
  • Catalog
    • Introduction
    • Data
      • Arrays
      • Tables
      • Single-Cell (SOMA)
      • Genomics (VCF)
      • Biomedical Imaging
      • Vector Search
      • Files
    • Code
      • Notebooks
      • Dashboards
      • User-Defined Functions
      • Task Graphs
      • ML Models
    • Groups
    • Marketplace
    • Search
  • Collaborate
    • Introduction
    • Organizations
    • Access Control
      • Introduction
      • Share Assets
      • Asset Permissions
      • Public Assets
    • Logging
    • Marketplace
  • Analyze
    • Introduction
    • Slice Data
    • Multi-Region Redirection
    • Notebooks
      • Launch a Notebook
      • Usage
      • Widgets
      • Notebook Image Dependencies
    • Dashboards
      • Dashboards
      • Streamlit
    • Preview
    • User-Defined Functions
    • Task Graphs
    • Serverless SQL
    • Monitor
      • Task Log
      • Task Graph Log
  • Scale
    • Introduction
    • Task Graphs
    • API Usage
  • Structure
    • Why Structure Is Important
    • Arrays
      • Introduction
      • Quickstart
      • Foundation
        • Array Data Model
        • Key Concepts
          • Storage
            • Arrays
            • Dimensions
            • Attributes
            • Cells
            • Domain
            • Tiles
            • Data Layout
            • Compression
            • Encryption
            • Tile Filters
            • Array Schema
            • Schema Evolution
            • Fragments
            • Fragment Metadata
            • Commits
            • Indexing
            • Array Metadata
            • Datetimes
            • Groups
            • Object Stores
          • Compute
            • Writes
            • Deletions
            • Consolidation
            • Vacuuming
            • Time Traveling
            • Reads
            • Query Conditions
            • Aggregates
            • User-Defined Functions
            • Distributed Compute
            • Concurrency
            • Parallelism
        • Storage Format Spec
      • Tutorials
        • Basics
          • Basic Dense Array
          • Basic Sparse Array
          • Array Metadata
          • Compression
          • Encryption
          • Data Layout
          • Tile Filters
          • Datetimes
          • Multiple Attributes
          • Variable-Length Attributes
          • String Dimensions
          • Nullable Attributes
          • Multi-Range Reads
          • Query Conditions
          • Aggregates
          • Deletions
          • Catching Errors
          • Configuration
          • Basic S3 Example
          • Basic TileDB Cloud
          • fromDataFrame
          • Palmer Penguins
        • Advanced
          • Schema Evolution
          • Advanced Writes
            • Write at a Timestamp
            • Get Fragment Info
            • Consolidation
              • Fragments
              • Fragment List
              • Consolidation Plan
              • Commits
              • Fragment Metadata
              • Array Metadata
            • Vacuuming
              • Fragments
              • Commits
              • Fragment Metadata
              • Array Metadata
          • Advanced Reads
            • Get Fragment Info
            • Time Traveling
              • Introduction
              • Fragments
              • Array Metadata
              • Schema Evolution
          • Array Upgrade
          • Backends
            • Amazon S3
            • Azure Blob Storage
            • Google Cloud Storage
            • MinIO
            • Lustre
          • Virtual Filesystem
          • User-Defined Functions
          • Distributed Compute
          • Result Estimation
          • Incomplete Queries
        • Management
          • Array Schema
          • Groups
          • Object Management
        • Performance
          • Summary of Factors
          • Dense vs. Sparse
          • Dimensions vs. Attributes
          • Compression
          • Tiling and Data Layout
          • Tuning Writes
          • Tuning Reads
      • API Reference
    • Tables
      • Introduction
      • Quickstart
      • Foundation
        • Data Model
        • Key Concepts
          • Indexes
          • Columnar Storage
          • Compression
          • Data Manipulation
          • Optimize Tables
          • ACID
          • Serverless SQL
          • SQL Connectors
          • Dataframes
          • CSV Ingestion
      • Tutorials
        • Basics
          • Ingestion with SQL
          • CSV Ingestion
          • Basic S3 Example
          • Running Locally
        • Advanced
          • Scalable Ingestion
          • Scalable Queries
      • API Reference
    • AI & ML
      • Vector Search
        • Introduction
        • Quickstart
        • Foundation
          • Data Model
          • Key Concepts
            • Vector Search
            • Vector Databases
            • Algorithms
            • Distance Metrics
            • Updates
            • Deployment Methods
            • Architecture
            • Distributed Compute
          • Storage Format Spec
        • Tutorials
          • Basics
            • Ingestion & Querying
            • Updates
            • Deletions
            • Basic S3 Example
            • Running Locally
          • Advanced
            • Versioning
            • Time Traveling
            • Consolidation
            • Distributed Compute
            • RAG LLM
            • LLM Memory
            • File Search
            • Image Search
            • Protein Search
          • Performance
        • API Reference
      • ML Models
        • Introduction
        • Quickstart
        • Foundation
          • Basics
          • Storage
          • Cloud Execution
          • Why TileDB for Machine Learning
        • Tutorials
          • Ingestion
            • Data Ingestion
              • Dense Datasets
              • Sparse Datasets
            • ML Model Ingestion
          • Management
            • Array Schema
            • Machine Learning: Groups
            • Time Traveling
    • Life Sciences
      • Single-cell
        • Introduction
        • Quickstart
        • Foundation
          • Data Model
          • Key Concepts
            • Data Structures
            • Use of Apache Arrow
            • Join IDs
            • State Management
            • TileDB Cloud URIs
          • SOMA API Specification
        • Tutorials
          • Data Ingestion
          • Bulk Ingestion Tutorial
          • Data Access
          • Distributed Compute
          • Basic S3 Example
          • Multi-Experiment Queries
          • Appending Data to a SOMA Experiment
          • Add New Measurements
          • SQL Queries
          • Running Locally
          • Shapes in TileDB-SOMA
          • Drug Discovery App
        • Spatial
          • Introduction
          • Foundation
            • Spatial Data Model
            • Data Structures
          • Tutorials
            • Spatial Data Ingestion
            • Access Spatial Data
            • Manage Coordinate Spaces
        • API Reference
      • Population Genomics
        • Introduction
        • Quickstart
        • Foundation
          • Data Model
          • Key Concepts
            • The N+1 Problem
            • Architecture
            • Arrays
            • Ingestion
            • Reads
            • Variant Statistics
            • Annotations
            • User-Defined Functions
            • Tables and SQL
            • Distributed Compute
          • Storage Format Spec
        • Tutorials
          • Basics
            • Basic Ingestion
            • Basic Queries
            • Export to VCF
            • Add New Samples
            • Deleting Samples
            • Basic S3 Example
            • Basic TileDB Cloud
          • Advanced
            • Scalable Ingestion
            • Scalable Queries
            • Query Transforms
            • Handling Large Queries
            • Annotations
              • Finding Annotations
              • Embedded Annotations
              • External Annotations
              • Annotation VCFs
              • Ingesting Annotations
            • Variant Statistics
            • Tables and SQL
            • User-Defined Functions
            • Sample Metadata
            • Split VCF
          • Performance
        • API Reference
          • Command Line Interface
          • Python API
          • Cloud API
      • Biomedical Imaging
        • Introduction
        • Foundation
          • Data Model
          • Key Concepts
            • Arrays
            • Ingestion
            • Reads
            • User Defined Functions
          • Storage Format Spec
        • Quickstart
        • Tutorials
          • Basics
            • Ingestion
            • Read
              • OpenSlide
              • TileDB-Py
          • Advanced
            • Batched Ingestion
            • Chunked Ingestion
            • Machine Learning
              • PyTorch
            • Napari
    • Files
  • API Reference
  • Self-Hosting
    • Installation
    • Upgrades
    • Administrative Tasks
    • Image Customization
      • Customize User-Defined Function Images
      • AWS ECR Container Registry
      • Customize Jupyter Notebook Images
    • Single Sign-On
      • Configure Single Sign-On
      • OpenID Connect
      • Okta SCIM
      • Microsoft Entra
  • Glossary

On this page

  • What is a tile?
  • Fill values
  1. Structure
  2. Arrays
  3. Foundation
  4. Key Concepts
  5. Storage
  6. Tiles

Tiles

arrays
foundation
tiling
A tile is a group of cells and is the atomic unit of I/O and compression in TileDB arrays.
Note

It is strongly recommended to read the following sections before you learn about tiles.

  • Key Concepts: Dimensions
  • Key Concepts: Attributes
  • Key Concepts: Domain
  • Key Concepts: Cells

What is a tile?

A tile is a group of cells, serving as the atomic unit of I/O and compression (see the Key Concepts: Compression and Key Concepts: Tile Filters sections for more information about compression and the other tile filters supported in TileDB). TileDB differentiates between the following tile definitions:

  • Space tile: This is defined upon array creation by specifying a tile extent per dimension, which partitions the dimension domain into equal segments.
  • Data tile: This is the actual collection of data values included in the tile and materialized on storage. In dense arrays, the space and the data tiles are equivalent. In sparse arrays, they may be different; space tiles define the overall data layout that sorts the data values on storage, but may contain empty cells that are not materialized. A data tile in sparse arrays is defined after the data is sorted and is determined by an extra parameter called capacity. All data tiles in both dense and sparse arrays have the same capacity (i.e., the same number of non-empty cells). In dense arrays, the capacity is inferred by the space tile, whereas in sparse arrays, the user specifies the capacity explicitly specified upon the array creation.

Section Key Concepts: Data Layout explains space and data tiles in more detail.

An illustration of a dense array fragment and a sparse array fragment. In the dense array, the space tiles are the same as the data tiles, whereas in the sparse array, the space tiles do not always overlap with the data tiles. An illustration of a dense array fragment and a sparse array fragment. In the dense array, the space tiles are the same as the data tiles, whereas in the sparse array, the space tiles do not always overlap with the data tiles.

In addition, it is worth mentioning the following terminology:

  • Logical tile: A logical tile (which can be either a space tile or a data tile) refers to the multi-dimensional cells of the array, regardless of how many attribute values each contains or how these are laid out on storage.
  • Physical tile: A physical tile can only be a data tile and always corresponds to the stored cell values across a specific attribute. This is the actual atomic unit of compression and I/O.

The above terminology forms the basis of other concepts and tutorials across the Academy.

Fill values

A user can populate a TileDB array partially and incrementally (see the Key Concepts: Domain section for the discussion on the non-empty domain). Therefore, the following scenarios are possible for the case of dense arrays:

  • A tile may be partially written.
  • A tile may be partially outside the array domain.
  • An empty tile may be read.

In all these cases, TileDB may need to write special fill values to tiles to indicate “empty cells”, or similarly return fill values for a query asking for unpopulated tiles. The following figure demonstrates some examples.

An illustration of the three scenarios where fill values occur in dense arrays. An illustration of the three scenarios where fill values occur in dense arrays.

TileDB supports the following default fill values per attribute type, but these can be set by the user when defining the attributes upon array creation.

Datatype Default fill value
TILEDB_BLOB 0
TILEDB_STRING_ASCII 0
TILEDB_STRING_UTF8 0
TILEDB_STRING_UTF16 0
TILEDB_STRING_UTF32 0
TILEDB_INT8 Minimum int8 value
TILEDB_UINT8 Maximum uint8 value
TILEDB_INT16 Minimum int16 value
TILEDB_UINT16 Maximum uint16 value
TILEDB_INT32 Minimum int32 value
TILEDB_UINT32 Maximum uint32 value
TILEDB_INT64 Minimum int64 value
TILEDB_UINT64 Maximum uint64 value
TILEDB_FLOAT32 NaN
TILEDB_FLOAT64 NaN
TILEDB_DATETIME_* Minimum int64 value
Note

In the case a fixed-sized attribute stores more than one value, all the cell values will be assigned the corresponding default value shown above.

Domain
Data Layout