1. Structure
  2. Life Sciences
  3. Single-cell
  4. Spatial
  5. Foundation
  6. Data Structures
  • Home
  • What is TileDB?
  • Get Started
  • Explore Content
  • Accounts
    • Individual Accounts
      • Apply for the Free Tier
      • Profile
        • Overview
        • Cloud Credentials
        • Storage Paths
        • REST API Tokens
        • Credits
    • Organization Admins
      • Create an Organization
      • Profile
        • Overview
        • Members
        • Cloud Credentials
        • Storage Paths
        • Billing
      • API Tokens
    • Organization Members
      • Organization Invitations
      • Profile
        • Overview
        • Members
        • Cloud Credentials
        • Storage Paths
        • Billing
      • API Tokens
  • Catalog
    • Introduction
    • Data
      • Arrays
      • Tables
      • Single-Cell (SOMA)
      • Genomics (VCF)
      • Biomedical Imaging
      • Vector Search
      • Files
    • Code
      • Notebooks
      • Dashboards
      • User-Defined Functions
      • Task Graphs
      • ML Models
    • Groups
    • Marketplace
    • Search
  • Collaborate
    • Introduction
    • Organizations
    • Access Control
      • Introduction
      • Share Assets
      • Asset Permissions
      • Public Assets
    • Logging
    • Marketplace
  • Analyze
    • Introduction
    • Slice Data
    • Multi-Region Redirection
    • Notebooks
      • Launch a Notebook
      • Usage
      • Widgets
      • Notebook Image Dependencies
    • Dashboards
      • Dashboards
      • Streamlit
    • Preview
    • User-Defined Functions
    • Task Graphs
    • Serverless SQL
    • Monitor
      • Task Log
      • Task Graph Log
  • Scale
    • Introduction
    • Task Graphs
    • API Usage
  • Structure
    • Why Structure Is Important
    • Arrays
      • Introduction
      • Quickstart
      • Foundation
        • Array Data Model
        • Key Concepts
          • Storage
            • Arrays
            • Dimensions
            • Attributes
            • Cells
            • Domain
            • Tiles
            • Data Layout
            • Compression
            • Encryption
            • Tile Filters
            • Array Schema
            • Schema Evolution
            • Fragments
            • Fragment Metadata
            • Commits
            • Indexing
            • Array Metadata
            • Datetimes
            • Groups
            • Object Stores
          • Compute
            • Writes
            • Deletions
            • Consolidation
            • Vacuuming
            • Time Traveling
            • Reads
            • Query Conditions
            • Aggregates
            • User-Defined Functions
            • Distributed Compute
            • Concurrency
            • Parallelism
        • Storage Format Spec
      • Tutorials
        • Basics
          • Basic Dense Array
          • Basic Sparse Array
          • Array Metadata
          • Compression
          • Encryption
          • Data Layout
          • Tile Filters
          • Datetimes
          • Multiple Attributes
          • Variable-Length Attributes
          • String Dimensions
          • Nullable Attributes
          • Multi-Range Reads
          • Query Conditions
          • Aggregates
          • Deletions
          • Catching Errors
          • Configuration
          • Basic S3 Example
          • Basic TileDB Cloud
          • fromDataFrame
          • Palmer Penguins
        • Advanced
          • Schema Evolution
          • Advanced Writes
            • Write at a Timestamp
            • Get Fragment Info
            • Consolidation
              • Fragments
              • Fragment List
              • Consolidation Plan
              • Commits
              • Fragment Metadata
              • Array Metadata
            • Vacuuming
              • Fragments
              • Commits
              • Fragment Metadata
              • Array Metadata
          • Advanced Reads
            • Get Fragment Info
            • Time Traveling
              • Introduction
              • Fragments
              • Array Metadata
              • Schema Evolution
          • Array Upgrade
          • Backends
            • Amazon S3
            • Azure Blob Storage
            • Google Cloud Storage
            • MinIO
            • Lustre
          • Virtual Filesystem
          • User-Defined Functions
          • Distributed Compute
          • Result Estimation
          • Incomplete Queries
        • Management
          • Array Schema
          • Groups
          • Object Management
        • Performance
          • Summary of Factors
          • Dense vs. Sparse
          • Dimensions vs. Attributes
          • Compression
          • Tiling and Data Layout
          • Tuning Writes
          • Tuning Reads
      • API Reference
    • Tables
      • Introduction
      • Quickstart
      • Foundation
        • Data Model
        • Key Concepts
          • Indexes
          • Columnar Storage
          • Compression
          • Data Manipulation
          • Optimize Tables
          • ACID
          • Serverless SQL
          • SQL Connectors
          • Dataframes
          • CSV Ingestion
      • Tutorials
        • Basics
          • Ingestion with SQL
          • CSV Ingestion
          • Basic S3 Example
          • Running Locally
        • Advanced
          • Scalable Ingestion
          • Scalable Queries
      • API Reference
    • AI & ML
      • Vector Search
        • Introduction
        • Quickstart
        • Foundation
          • Data Model
          • Key Concepts
            • Vector Search
            • Vector Databases
            • Algorithms
            • Distance Metrics
            • Updates
            • Deployment Methods
            • Architecture
            • Distributed Compute
          • Storage Format Spec
        • Tutorials
          • Basics
            • Ingestion & Querying
            • Updates
            • Deletions
            • Basic S3 Example
            • Running Locally
          • Advanced
            • Versioning
            • Time Traveling
            • Consolidation
            • Distributed Compute
            • RAG LLM
            • LLM Memory
            • File Search
            • Image Search
            • Protein Search
          • Performance
        • API Reference
      • ML Models
        • Introduction
        • Quickstart
        • Foundation
          • Basics
          • Storage
          • Cloud Execution
          • Why TileDB for Machine Learning
        • Tutorials
          • Ingestion
            • Data Ingestion
              • Dense Datasets
              • Sparse Datasets
            • ML Model Ingestion
          • Management
            • Array Schema
            • Machine Learning: Groups
            • Time Traveling
    • Life Sciences
      • Single-cell
        • Introduction
        • Quickstart
        • Foundation
          • Data Model
          • Key Concepts
            • Data Structures
            • Use of Apache Arrow
            • Join IDs
            • State Management
            • TileDB Cloud URIs
          • SOMA API Specification
        • Tutorials
          • Data Ingestion
          • Bulk Ingestion Tutorial
          • Data Access
          • Distributed Compute
          • Basic S3 Example
          • Multi-Experiment Queries
          • Appending Data to a SOMA Experiment
          • Add New Measurements
          • SQL Queries
          • Running Locally
          • Shapes in TileDB-SOMA
          • Drug Discovery App
        • Spatial
          • Introduction
          • Foundation
            • Spatial Data Model
            • Data Structures
          • Tutorials
            • Spatial Data Ingestion
            • Access Spatial Data
            • Manage Coordinate Spaces
        • API Reference
      • Population Genomics
        • Introduction
        • Quickstart
        • Foundation
          • Data Model
          • Key Concepts
            • The N+1 Problem
            • Architecture
            • Arrays
            • Ingestion
            • Reads
            • Variant Statistics
            • Annotations
            • User-Defined Functions
            • Tables and SQL
            • Distributed Compute
          • Storage Format Spec
        • Tutorials
          • Basics
            • Basic Ingestion
            • Basic Queries
            • Export to VCF
            • Add New Samples
            • Deleting Samples
            • Basic S3 Example
            • Basic TileDB Cloud
          • Advanced
            • Scalable Ingestion
            • Scalable Queries
            • Query Transforms
            • Handling Large Queries
            • Annotations
              • Finding Annotations
              • Embedded Annotations
              • External Annotations
              • Annotation VCFs
              • Ingesting Annotations
            • Variant Statistics
            • Tables and SQL
            • User-Defined Functions
            • Sample Metadata
            • Split VCF
          • Performance
        • API Reference
          • Command Line Interface
          • Python API
          • Cloud API
      • Biomedical Imaging
        • Introduction
        • Foundation
          • Data Model
          • Key Concepts
            • Arrays
            • Ingestion
            • Reads
            • User Defined Functions
          • Storage Format Spec
        • Quickstart
        • Tutorials
          • Basics
            • Ingestion
            • Read
              • OpenSlide
              • TileDB-Py
          • Advanced
            • Batched Ingestion
            • Chunked Ingestion
            • Machine Learning
              • PyTorch
            • Napari
    • Files
  • API Reference
  • Self-Hosting
    • Installation
    • Upgrades
    • Administrative Tasks
    • Image Customization
      • Customize User-Defined Function Images
      • AWS ECR Container Registry
      • Customize Jupyter Notebook Images
    • Single Sign-On
      • Configure Single Sign-On
      • OpenID Connect
      • Okta SCIM
      • Microsoft Entra
  • Glossary

On this page

  • Foundational data structures
    • SOMAPointCloudDataFrame
    • SOMAGeometryDataFrame
    • SOMAMultiscaleImage
  • Composed data structures
    • SOMAScene
  1. Structure
  2. Life Sciences
  3. Single-cell
  4. Spatial
  5. Foundation
  6. Data Structures

Data Structures

life sciences
single cell (soma)
spatial
foundation
Learn about the key data structures for spatial omics in TileDB-SOMA on this page.

The spatial omics data structures are an addition to the core SOMA data model. Refer to SOMA Data Structures for other data structures in the SOMA data model.

Foundational data structures

SOMAPointCloudDataFrame

SOMAPointCloudDataFrame is a multi-column table with a user-defined Arrow Schema, defining the number of columns and the column name and value type.

Like the SOMADataFrame, every SOMAPointCloudDataFrame must have a column called soma_joinid of type int64 and domain [0, 2^63-1]. The soma_joinid acts as a joint key for other objects, such as SOMASparseNDArray. There may be many items with the same soma_joinid stored in the SOMAPointCloudDataFrame.

Along with the soma_joinid, the user must define spatial columns, referred to as spatial axes, that define the “points” in the array. Each spatial axis must be either an integer or floating point type, and they must all have the same type. The user may specify a restricted domain for spatial axes or allow the axes to support the entire valid type range.

The default “fill” value for SOMAPointCloudDataFrame is the zero or null value of the corresponding column data type (for example, Arrow.float32 defaults to 0.0, Arrow.string to "", and so on).

SOMAGeometryDataFrame

SOMAGeometryDataFrame is a multi-column table with a user-defined Arrow Schema, defining the number of columns and their corresponding column name and value type.

Like the SOMADataFrame, every SOMAGeometryDataFrame must have a column called soma_joinid of type int64 and domain [0, 2^63-1]. The soma_joinid acts as a joint key for other objects, such as SOMASparseNDArray. There may be many items with the same soma_joinid stored in the SOMAGeometryDataFrame.

Every SOMAGeometryDataFrame must also have a column called soma_geometry with type binary that stores a well-known binary blob. The user must give names for the axes of the geometry stored in the well-known binary that are distinct from the names of other columns in the table. The SOMAGeometryDataFrame can store many items with the same geometry.

The default “fill” value for SOMAGeometryDataFrame is the zero or null value of the corresponding column data type (for example, Arrow.float32 defaults to 0.0, Arrow.string to "", and so on).

SOMAMultiscaleImage

SOMAMultiscaleImage is a string-keyed map of “images” where each image is a SOMADenseNDArray. The SOMAMultiscaleImage is also indexed by the maximum shape (largest to smallest). The maximum shape of each SOMADenseNDArray must be the size of the entire image, but it may have regions without data. These regions without data return the fill value of the SOMADenseNDArray. Keys in the map are unique and singular (no duplicates, that is, since the SOMAMultiscaleImage is not a multi-map).

The SOMAMultiscaleImage must have a fixed image axis order (for example channel-height-width) and a fixed number of channels (if a channel column exists). Each image within the SOMAMultiscaleImage must match these conventions.

Composed data structures

SOMAScene

A SOMAScene is a specialized SOMACollection that stores spatially resolved data on a defined coordinate space. The SOMAScene stores coordinate transformations from the coordinate spaces of the stored elements back to the coordinate space of the scene. It has the following predefined fields:

  • img: A SOMACollection of SOMAMultiscaleImages. This subcollection stores imagery that is mappable back to the SOMAScene.

  • obsl: A SOMACollection of SOMAPointCloudDataFrame and SOMAGeometryDataFrame objects. The l in obsl is for location. This stores location-based annotations on the observation domain. The soma_joinid column of any object stored in this collection refers to the obsid.

  • varl: A nested SOMACollection of SOMACollections. The top-level collection maps from measurement name to SOMACollections of SOMAPointCloudDataFrame and SOMAGeometryDataFrame objects. The l in varl is for location. This stores location-based annotations on the variable domain. The soma_joinid column of any object stored in the collections refers to the varid of the measurement.

Spatial Data Model
Tutorials