1. Structure
  2. Life Sciences
  3. Single-cell
  4. Tutorials
  5. Drug Discovery App
  • Home
  • What is TileDB?
  • Get Started
  • Explore Content
  • Accounts
    • Individual Accounts
      • Apply for the Free Tier
      • Profile
        • Overview
        • Cloud Credentials
        • Storage Paths
        • REST API Tokens
        • Credits
    • Organization Admins
      • Create an Organization
      • Profile
        • Overview
        • Members
        • Cloud Credentials
        • Storage Paths
        • Billing
      • API Tokens
    • Organization Members
      • Organization Invitations
      • Profile
        • Overview
        • Members
        • Cloud Credentials
        • Storage Paths
        • Billing
      • API Tokens
  • Catalog
    • Introduction
    • Data
      • Arrays
      • Tables
      • Single-Cell (SOMA)
      • Genomics (VCF)
      • Biomedical Imaging
      • Vector Search
      • Files
    • Code
      • Notebooks
      • Dashboards
      • User-Defined Functions
      • Task Graphs
      • ML Models
    • Groups
    • Marketplace
    • Search
  • Collaborate
    • Introduction
    • Organizations
    • Access Control
      • Introduction
      • Share Assets
      • Asset Permissions
      • Public Assets
    • Logging
    • Marketplace
  • Analyze
    • Introduction
    • Slice Data
    • Multi-Region Redirection
    • Notebooks
      • Launch a Notebook
      • Usage
      • Widgets
      • Notebook Image Dependencies
    • Dashboards
      • Dashboards
      • Streamlit
    • Preview
    • User-Defined Functions
    • Task Graphs
    • Serverless SQL
    • Monitor
      • Task Log
      • Task Graph Log
  • Scale
    • Introduction
    • Task Graphs
    • API Usage
  • Structure
    • Why Structure Is Important
    • Arrays
      • Introduction
      • Quickstart
      • Foundation
        • Array Data Model
        • Key Concepts
          • Storage
            • Arrays
            • Dimensions
            • Attributes
            • Cells
            • Domain
            • Tiles
            • Data Layout
            • Compression
            • Encryption
            • Tile Filters
            • Array Schema
            • Schema Evolution
            • Fragments
            • Fragment Metadata
            • Commits
            • Indexing
            • Array Metadata
            • Datetimes
            • Groups
            • Object Stores
          • Compute
            • Writes
            • Deletions
            • Consolidation
            • Vacuuming
            • Time Traveling
            • Reads
            • Query Conditions
            • Aggregates
            • User-Defined Functions
            • Distributed Compute
            • Concurrency
            • Parallelism
        • Storage Format Spec
      • Tutorials
        • Basics
          • Basic Dense Array
          • Basic Sparse Array
          • Array Metadata
          • Compression
          • Encryption
          • Data Layout
          • Tile Filters
          • Datetimes
          • Multiple Attributes
          • Variable-Length Attributes
          • String Dimensions
          • Nullable Attributes
          • Multi-Range Reads
          • Query Conditions
          • Aggregates
          • Deletions
          • Catching Errors
          • Configuration
          • Basic S3 Example
          • Basic TileDB Cloud
          • fromDataFrame
          • Palmer Penguins
        • Advanced
          • Schema Evolution
          • Advanced Writes
            • Write at a Timestamp
            • Get Fragment Info
            • Consolidation
              • Fragments
              • Fragment List
              • Consolidation Plan
              • Commits
              • Fragment Metadata
              • Array Metadata
            • Vacuuming
              • Fragments
              • Commits
              • Fragment Metadata
              • Array Metadata
          • Advanced Reads
            • Get Fragment Info
            • Time Traveling
              • Introduction
              • Fragments
              • Array Metadata
              • Schema Evolution
          • Array Upgrade
          • Backends
            • Amazon S3
            • Azure Blob Storage
            • Google Cloud Storage
            • MinIO
            • Lustre
          • Virtual Filesystem
          • User-Defined Functions
          • Distributed Compute
          • Result Estimation
          • Incomplete Queries
        • Management
          • Array Schema
          • Groups
          • Object Management
        • Performance
          • Summary of Factors
          • Dense vs. Sparse
          • Dimensions vs. Attributes
          • Compression
          • Tiling and Data Layout
          • Tuning Writes
          • Tuning Reads
      • API Reference
    • Tables
      • Introduction
      • Quickstart
      • Foundation
        • Data Model
        • Key Concepts
          • Indexes
          • Columnar Storage
          • Compression
          • Data Manipulation
          • Optimize Tables
          • ACID
          • Serverless SQL
          • SQL Connectors
          • Dataframes
          • CSV Ingestion
      • Tutorials
        • Basics
          • Ingestion with SQL
          • CSV Ingestion
          • Basic S3 Example
          • Running Locally
        • Advanced
          • Scalable Ingestion
          • Scalable Queries
      • API Reference
    • AI & ML
      • Vector Search
        • Introduction
        • Quickstart
        • Foundation
          • Data Model
          • Key Concepts
            • Vector Search
            • Vector Databases
            • Algorithms
            • Distance Metrics
            • Updates
            • Deployment Methods
            • Architecture
            • Distributed Compute
          • Storage Format Spec
        • Tutorials
          • Basics
            • Ingestion & Querying
            • Updates
            • Deletions
            • Basic S3 Example
            • Running Locally
          • Advanced
            • Versioning
            • Time Traveling
            • Consolidation
            • Distributed Compute
            • RAG LLM
            • LLM Memory
            • File Search
            • Image Search
            • Protein Search
          • Performance
        • API Reference
      • ML Models
        • Introduction
        • Quickstart
        • Foundation
          • Basics
          • Storage
          • Cloud Execution
          • Why TileDB for Machine Learning
        • Tutorials
          • Ingestion
            • Data Ingestion
              • Dense Datasets
              • Sparse Datasets
            • ML Model Ingestion
          • Management
            • Array Schema
            • Machine Learning: Groups
            • Time Traveling
    • Life Sciences
      • Single-cell
        • Introduction
        • Quickstart
        • Foundation
          • Data Model
          • Key Concepts
            • Data Structures
            • Use of Apache Arrow
            • Join IDs
            • State Management
            • TileDB Cloud URIs
          • SOMA API Specification
        • Tutorials
          • Data Ingestion
          • Bulk Ingestion Tutorial
          • Data Access
          • Distributed Compute
          • Basic S3 Example
          • Multi-Experiment Queries
          • Appending Data to a SOMA Experiment
          • Add New Measurements
          • SQL Queries
          • Running Locally
          • Shapes in TileDB-SOMA
          • Drug Discovery App
        • Spatial
          • Introduction
          • Foundation
            • Spatial Data Model
            • Data Structures
          • Tutorials
            • Spatial Data Ingestion
            • Access Spatial Data
            • Manage Coordinate Spaces
        • API Reference
      • Population Genomics
        • Introduction
        • Quickstart
        • Foundation
          • Data Model
          • Key Concepts
            • The N+1 Problem
            • Architecture
            • Arrays
            • Ingestion
            • Reads
            • Variant Statistics
            • Annotations
            • User-Defined Functions
            • Tables and SQL
            • Distributed Compute
          • Storage Format Spec
        • Tutorials
          • Basics
            • Basic Ingestion
            • Basic Queries
            • Export to VCF
            • Add New Samples
            • Deleting Samples
            • Basic S3 Example
            • Basic TileDB Cloud
          • Advanced
            • Scalable Ingestion
            • Scalable Queries
            • Query Transforms
            • Handling Large Queries
            • Annotations
              • Finding Annotations
              • Embedded Annotations
              • External Annotations
              • Annotation VCFs
              • Ingesting Annotations
            • Variant Statistics
            • Tables and SQL
            • User-Defined Functions
            • Sample Metadata
            • Split VCF
          • Performance
        • API Reference
          • Command Line Interface
          • Python API
          • Cloud API
      • Biomedical Imaging
        • Introduction
        • Foundation
          • Data Model
          • Key Concepts
            • Arrays
            • Ingestion
            • Reads
            • User Defined Functions
          • Storage Format Spec
        • Quickstart
        • Tutorials
          • Basics
            • Ingestion
            • Read
              • OpenSlide
              • TileDB-Py
          • Advanced
            • Batched Ingestion
            • Chunked Ingestion
            • Machine Learning
              • PyTorch
            • Napari
    • Files
  • API Reference
  • Self-Hosting
    • Installation
    • Upgrades
    • Administrative Tasks
    • Image Customization
      • Customize User-Defined Function Images
      • AWS ECR Container Registry
      • Customize Jupyter Notebook Images
    • Single Sign-On
      • Configure Single Sign-On
      • OpenID Connect
      • Okta SCIM
      • Microsoft Entra
  • Glossary

On this page

  • Prerequisites
  • Steps
  1. Structure
  2. Life Sciences
  3. Single-cell
  4. Tutorials
  5. Drug Discovery App

Drug Discovery App

life sciences
single cell (soma)
tutorials
dashboards
notebooks
python
streamlit
Learn how to build a drug discovery app in TileDB that accepts an AnnData file and produces rich visualizations with Streamlit.

Streamlit turns Python code into shareable web applications, without the need for front end knowledge. With some extra configuration, you can create Streamlit dashboards based on Jupyter notebooks in TileDB.

Here, you will build a drug discovery app that analyzes single-cell RNA-seq data. This app shows a summary of the number of cells and genes, a visualization of the proximity of genes to cells generated with either the Leiden algorithm or the Louvain method, and the marker gene expression.

Prerequisites

To complete this tutorial successfully, make sure you do the following:

  1. Launch a new notebook server with the Genomics image.
  2. Create the streamlit_jupyter plugin.

Steps

Start by creating a new notebook in TileDB. In the first cell, you’ll load the streamlit_jupyter plugin you created earlier.

  • Python
%load_ext streamlit_jupyter

Install Streamlit and Louvain:

  • Python
%pip install --quiet --user -U --no-warn-script-location streamlit louvain

Add the %%streamlit cell magic, and add the rest of your code to build your dashboard:

  • Python
%%streamlit
import scanpy as sc
import pandas as pd
import matplotlib.pyplot as plt

# App Title
st.title("Single-Cell Drug Discovery App")
st.markdown("""
This app allows you to analyze single-cell RNA-seq data for drug discovery. 
Upload your dataset, visualize cell clusters, and explore marker gene expression.
""")

# Sidebar for user inputs
st.sidebar.header("Upload Options")
uploaded_file = st.sidebar.file_uploader("Upload h5ad File", type=["h5ad"])

# Sidebar parameters for visualization
st.sidebar.header("Visualization Parameters")
cluster_method = st.sidebar.selectbox("Clustering Method", ["leiden", "louvain"])
marker_gene = st.sidebar.text_input("Marker Gene", "GAPDH")
show_umap = st.sidebar.checkbox("Show UMAP", True)

# Main content
if uploaded_file:
    # Load the dataset
    st.write("## Dataset Summary")
    adata = sc.read_h5ad(uploaded_file)
    st.write(f"Dataset contains {adata.n_obs} cells and {adata.n_vars} genes.")

    # Perform clustering and UMAP
    st.write("## Clustering and Visualization")
    sc.pp.neighbors(adata)
    sc.tl.umap(adata)
    sc.tl.leiden(adata) if cluster_method == "leiden" else sc.tl.louvain(adata)

    # Visualize UMAP
    if show_umap:
        fig, ax = plt.subplots(figsize=(6, 6))
        sc.pl.umap(adata, color=cluster_method, show=False, ax=ax)
        st.pyplot(fig)

    # Marker gene visualization
    st.write("## Marker Gene Expression")
    if marker_gene in adata.var_names:
        fig, ax = plt.subplots(figsize=(6, 6))
        sc.pl.umap(adata, color=marker_gene, show=False, ax=ax)
        st.pyplot(fig)
    else:
        st.error(f"Marker gene '{marker_gene}' not found in dataset.")

    # Export clustered data
    st.write("## Download Clustered Data")
    output_file = f"clustered_{cluster_method}.h5ad"
    adata.write(output_file)
    with open(output_file, "rb") as f:
        st.download_button("Download Clustered Data", f, file_name=output_file)

else:
    st.info("Please upload a `.h5ad` file to start.")

Convert the notebook to a dashboard, and launch the dashboard in the existing server. It should look like the following:

A screenshot of the drug discovery app in TileDB. A screenshot of the drug discovery app in TileDB.

Upload an H5AD file. Select the Clustering Method you want to use (possible values are leiden or louvain). Pass a Marker Gene. Now, the Streamlit app should generate the visualization.

Shapes in TileDB-SOMA
Spatial