1. Structure
  2. AI & ML
  3. Vector Search
  4. Tutorials
  5. Advanced
  6. Distributed Compute
  • Home
  • What is TileDB?
  • Get Started
  • Explore Content
  • Accounts
    • Individual Accounts
      • Apply for the Free Tier
      • Profile
        • Overview
        • Cloud Credentials
        • Storage Paths
        • REST API Tokens
        • Credits
    • Organization Admins
      • Create an Organization
      • Profile
        • Overview
        • Members
        • Cloud Credentials
        • Storage Paths
        • Billing
      • API Tokens
    • Organization Members
      • Organization Invitations
      • Profile
        • Overview
        • Members
        • Cloud Credentials
        • Storage Paths
        • Billing
      • API Tokens
  • Catalog
    • Introduction
    • Data
      • Arrays
      • Tables
      • Single-Cell (SOMA)
      • Genomics (VCF)
      • Biomedical Imaging
      • Vector Search
      • Files
    • Code
      • Notebooks
      • Dashboards
      • User-Defined Functions
      • Task Graphs
      • ML Models
    • Groups
    • Marketplace
    • Search
  • Collaborate
    • Introduction
    • Organizations
    • Access Control
      • Introduction
      • Share Assets
      • Asset Permissions
      • Public Assets
    • Logging
    • Marketplace
  • Analyze
    • Introduction
    • Slice Data
    • Multi-Region Redirection
    • Notebooks
      • Launch a Notebook
      • Usage
      • Widgets
      • Notebook Image Dependencies
    • Dashboards
      • Dashboards
      • Streamlit
    • Preview
    • User-Defined Functions
    • Task Graphs
    • Serverless SQL
    • Monitor
      • Task Log
      • Task Graph Log
  • Scale
    • Introduction
    • Task Graphs
    • API Usage
  • Structure
    • Why Structure Is Important
    • Arrays
      • Introduction
      • Quickstart
      • Foundation
        • Array Data Model
        • Key Concepts
          • Storage
            • Arrays
            • Dimensions
            • Attributes
            • Cells
            • Domain
            • Tiles
            • Data Layout
            • Compression
            • Encryption
            • Tile Filters
            • Array Schema
            • Schema Evolution
            • Fragments
            • Fragment Metadata
            • Commits
            • Indexing
            • Array Metadata
            • Datetimes
            • Groups
            • Object Stores
          • Compute
            • Writes
            • Deletions
            • Consolidation
            • Vacuuming
            • Time Traveling
            • Reads
            • Query Conditions
            • Aggregates
            • User-Defined Functions
            • Distributed Compute
            • Concurrency
            • Parallelism
        • Storage Format Spec
      • Tutorials
        • Basics
          • Basic Dense Array
          • Basic Sparse Array
          • Array Metadata
          • Compression
          • Encryption
          • Data Layout
          • Tile Filters
          • Datetimes
          • Multiple Attributes
          • Variable-Length Attributes
          • String Dimensions
          • Nullable Attributes
          • Multi-Range Reads
          • Query Conditions
          • Aggregates
          • Deletions
          • Catching Errors
          • Configuration
          • Basic S3 Example
          • Basic TileDB Cloud
          • fromDataFrame
          • Palmer Penguins
        • Advanced
          • Schema Evolution
          • Advanced Writes
            • Write at a Timestamp
            • Get Fragment Info
            • Consolidation
              • Fragments
              • Fragment List
              • Consolidation Plan
              • Commits
              • Fragment Metadata
              • Array Metadata
            • Vacuuming
              • Fragments
              • Commits
              • Fragment Metadata
              • Array Metadata
          • Advanced Reads
            • Get Fragment Info
            • Time Traveling
              • Introduction
              • Fragments
              • Array Metadata
              • Schema Evolution
          • Array Upgrade
          • Backends
            • Amazon S3
            • Azure Blob Storage
            • Google Cloud Storage
            • MinIO
            • Lustre
          • Virtual Filesystem
          • User-Defined Functions
          • Distributed Compute
          • Result Estimation
          • Incomplete Queries
        • Management
          • Array Schema
          • Groups
          • Object Management
        • Performance
          • Summary of Factors
          • Dense vs. Sparse
          • Dimensions vs. Attributes
          • Compression
          • Tiling and Data Layout
          • Tuning Writes
          • Tuning Reads
      • API Reference
    • Tables
      • Introduction
      • Quickstart
      • Foundation
        • Data Model
        • Key Concepts
          • Indexes
          • Columnar Storage
          • Compression
          • Data Manipulation
          • Optimize Tables
          • ACID
          • Serverless SQL
          • SQL Connectors
          • Dataframes
          • CSV Ingestion
      • Tutorials
        • Basics
          • Ingestion with SQL
          • CSV Ingestion
          • Basic S3 Example
          • Running Locally
        • Advanced
          • Scalable Ingestion
          • Scalable Queries
      • API Reference
    • AI & ML
      • Vector Search
        • Introduction
        • Quickstart
        • Foundation
          • Data Model
          • Key Concepts
            • Vector Search
            • Vector Databases
            • Algorithms
            • Distance Metrics
            • Updates
            • Deployment Methods
            • Architecture
            • Distributed Compute
          • Storage Format Spec
        • Tutorials
          • Basics
            • Ingestion & Querying
            • Updates
            • Deletions
            • Basic S3 Example
            • Running Locally
          • Advanced
            • Versioning
            • Time Traveling
            • Consolidation
            • Distributed Compute
            • RAG LLM
            • LLM Memory
            • File Search
            • Image Search
            • Protein Search
          • Performance
        • API Reference
      • ML Models
        • Introduction
        • Quickstart
        • Foundation
          • Basics
          • Storage
          • Cloud Execution
          • Why TileDB for Machine Learning
        • Tutorials
          • Ingestion
            • Data Ingestion
              • Dense Datasets
              • Sparse Datasets
            • ML Model Ingestion
          • Management
            • Array Schema
            • Machine Learning: Groups
            • Time Traveling
    • Life Sciences
      • Single-cell
        • Introduction
        • Quickstart
        • Foundation
          • Data Model
          • Key Concepts
            • Data Structures
            • Use of Apache Arrow
            • Join IDs
            • State Management
            • TileDB Cloud URIs
          • SOMA API Specification
        • Tutorials
          • Data Ingestion
          • Bulk Ingestion Tutorial
          • Data Access
          • Distributed Compute
          • Basic S3 Example
          • Multi-Experiment Queries
          • Appending Data to a SOMA Experiment
          • Add New Measurements
          • SQL Queries
          • Running Locally
          • Shapes in TileDB-SOMA
          • Drug Discovery App
        • Spatial
          • Introduction
          • Foundation
            • Spatial Data Model
            • Data Structures
          • Tutorials
            • Spatial Data Ingestion
            • Access Spatial Data
            • Manage Coordinate Spaces
        • API Reference
      • Population Genomics
        • Introduction
        • Quickstart
        • Foundation
          • Data Model
          • Key Concepts
            • The N+1 Problem
            • Architecture
            • Arrays
            • Ingestion
            • Reads
            • Variant Statistics
            • Annotations
            • User-Defined Functions
            • Tables and SQL
            • Distributed Compute
          • Storage Format Spec
        • Tutorials
          • Basics
            • Basic Ingestion
            • Basic Queries
            • Export to VCF
            • Add New Samples
            • Deleting Samples
            • Basic S3 Example
            • Basic TileDB Cloud
          • Advanced
            • Scalable Ingestion
            • Scalable Queries
            • Query Transforms
            • Handling Large Queries
            • Annotations
              • Finding Annotations
              • Embedded Annotations
              • External Annotations
              • Annotation VCFs
              • Ingesting Annotations
            • Variant Statistics
            • Tables and SQL
            • User-Defined Functions
            • Sample Metadata
            • Split VCF
          • Performance
        • API Reference
          • Command Line Interface
          • Python API
          • Cloud API
      • Biomedical Imaging
        • Introduction
        • Foundation
          • Data Model
          • Key Concepts
            • Arrays
            • Ingestion
            • Reads
            • User Defined Functions
          • Storage Format Spec
        • Quickstart
        • Tutorials
          • Basics
            • Ingestion
            • Read
              • OpenSlide
              • TileDB-Py
          • Advanced
            • Batched Ingestion
            • Chunked Ingestion
            • Machine Learning
              • PyTorch
            • Napari
    • Files
  • API Reference
  • Self-Hosting
    • Installation
    • Upgrades
    • Administrative Tasks
    • Image Customization
      • Customize User-Defined Function Images
      • AWS ECR Container Registry
      • Customize Jupyter Notebook Images
    • Single Sign-On
      • Configure Single Sign-On
      • OpenID Connect
      • Okta SCIM
      • Microsoft Entra
  • Glossary

On this page

  • Setup
  • Distributed ingestion
  • Distributed queries
  • Cleanup
  1. Structure
  2. AI & ML
  3. Vector Search
  4. Tutorials
  5. Advanced
  6. Distributed Compute

Use Distributed Compute with Vector Index Data

ai/ml
vector search
tutorials
scalable compute
Demonstration of TileDB-Vector-Search distributed execution capabilities.
How to run this tutorial

We recommend running this tutorial, as well as the other various tutorials in the Tutorials section, inside TileDB Cloud. This will allow you to quickly experiment avoiding all the installation, deployment, and configuration hassles. Sign up for the free tier, spin up a TileDB Cloud notebook with a Python kernel, and follow the tutorial instructions. If you wish to learn how to run tutorials locally on your machine, read the Tutorials: Running Locally tutorial.

This tutorial shows the capabilities of TileDB-Vector-Search distributed execution on TileDB Cloud. It assumes you have already completed the Get Started section.

Setup

Import the necessary libraries, set up the URIs you will use throughout this tutorial, and clean up any previously created data.

import os

import numpy as np
import tiledb
import tiledb.cloud
import tiledb.vector_search as vs

# Get the bucket from environment variables
s3_bucket = os.environ["S3_BUCKET"]

# Your username
username = tiledb.cloud.user_profile().username

# URIs you will use throughout this tutorial
index_name = "distributed_compute"
index_uri = "tiledb://" + username + "/" + index_name
index_reg_uri = "tiledb://" + username + "/" + s3_bucket + "/" + index_name
source_uri = "tiledb://TileDB-Inc/ann_sift1b_raw_vectors_col_major"
query_vector_uri = "tiledb://TileDB-Inc/bigann_1b_ground_truth_query"

# Clean up
if tiledb.object_type(index_uri) == "group":
    tiledb.cloud.asset.delete(index_uri, recursive=True)

Distributed ingestion

Distributed ingestion can greatly speed up and horizontally scale out the ingestion of vectors. In this example, you will ingest the entire SIFT 10 million vector dataset using the IVF_FLAT index (which involves computing \(k\)-means, a computationally intensive operation) in 6 minutes, for a total cost of approximately $0.18 in TileDB Cloud.

To use distributed execution in TileDB Cloud, you can change the ingestion mode of TileDB-Vector-Search ingest function. Passing mode=vs.Mode.BATCH instructs TileDB-Vector-Search to use distributed computation with TileDB Cloud batch task graphs. For more information on task graph modes, visit the Scale: Task Graphs section.

You can ingest the first 10M vectors of SIFT-1B dataset to an IVF_FLAT index as follows:

# Ingest 10M vectors with distributed execution.
# NOTE: this may take some time to run.
index = vs.ingest(
    index_type="IVF_FLAT",
    index_uri=index_reg_uri,
    source_uri=source_uri,
    size=10000000,
    config=tiledb.cloud.Config().dict(),
    mode=vs.Mode.BATCH,
)

Note that ingest automatically calculates the number of workers that will work in parallel to perform the ingestion, and you don’t need to spin up any cluster. Everything is serverless!

TileDB Cloud records all the details about the task graph, and lets you monitor it in real time. You can find this information under Monitor -> Logs on the TileDB Cloud UI console.

Distributed ingestion in TileDB-Vector-Search. Depicts the TileDB monitoring UI for the ingestion taskgraph. It shows that the taskgraph was successful in 6 minutes for a total cost of $0.18 Distributed ingestion in TileDB-Vector-Search. Depicts the TileDB monitoring UI for the ingestion taskgraph. It shows that the taskgraph was successful in 6 minutes for a total cost of $0.18

Distributed queries

Distributed queries give you the capability of using more computing resources to query larger datasets with lower latency, yielding a much higher queries per second (QPS). In the example below, you will submit a batch of 1000 query vectors to the 10 million vector dataset, all executed in 12 seconds for a cost of approximately $0.009.

Performing a distributed query is similar to the ingestion described above, but now you can set mode to REALTIME as it will be faster:

# Read 1000 query vectors
n_vectors = 1000
query_vectors = np.transpose(
    vs.load_as_array(query_vector_uri, config=tiledb.cloud.Config().dict()).astype(
        np.float32
    )
)[0:n_vectors]

# Return the 10 most similar vectors for each query using 5 workers
workers = 5
result_d, result_i = index.query(
    query_vectors,
    nprobe=10,
    k=10,
    mode=vs.Mode.REALTIME,
    num_partitions=workers,
    num_workers=workers,
)

print(f"Results shape: {result_i.shape}")
print("Results for the first query vector:")
print(f"\tSimilar vector IDs: {result_i[0]}")
print(f"\tDistances: {result_d[0]}")
Results shape: (1000, 10)
Results for the first query vector:
    Similar vector IDs: [8003804  225144 6190929 8290005 5945478 3720158 3414226 1579070  225056
 1324400]
    Distances: [129027. 132996. 135573. 136643. 137354. 138492. 138665. 140529. 141080.
 142318.]

Distributed query in TileDB-Vector-Search. Depicts the TileDB monitoring UI for the query taskgraph. It shows that the taskgraph was successful in 12 seconds for a total cost of $0.009 Distributed query in TileDB-Vector-Search. Depicts the TileDB monitoring UI for the query taskgraph. It shows that the taskgraph was successful in 12 seconds for a total cost of $0.009

Cleanup

Clean up in the end by deleting the created index:

# Clean up
if tiledb.object_type(index_uri) == "group":
    tiledb.cloud.asset.delete(index_uri, recursive=True)
Consolidation
RAG LLM