1. Structure
  2. Arrays
  3. Tutorials
  4. Advanced
  5. Schema Evolution
  • Home
  • What is TileDB?
  • Get Started
  • Explore Content
  • Accounts
    • Individual Accounts
      • Apply for the Free Tier
      • Profile
        • Overview
        • Cloud Credentials
        • Storage Paths
        • REST API Tokens
        • Credits
    • Organization Admins
      • Create an Organization
      • Profile
        • Overview
        • Members
        • Cloud Credentials
        • Storage Paths
        • Billing
      • API Tokens
    • Organization Members
      • Organization Invitations
      • Profile
        • Overview
        • Members
        • Cloud Credentials
        • Storage Paths
        • Billing
      • API Tokens
  • Catalog
    • Introduction
    • Data
      • Arrays
      • Tables
      • Single-Cell (SOMA)
      • Genomics (VCF)
      • Biomedical Imaging
      • Vector Search
      • Files
    • Code
      • Notebooks
      • Dashboards
      • User-Defined Functions
      • Task Graphs
      • ML Models
    • Groups
    • Marketplace
    • Search
  • Collaborate
    • Introduction
    • Organizations
    • Access Control
      • Introduction
      • Share Assets
      • Asset Permissions
      • Public Assets
    • Logging
    • Marketplace
  • Analyze
    • Introduction
    • Slice Data
    • Multi-Region Redirection
    • Notebooks
      • Launch a Notebook
      • Usage
      • Widgets
      • Notebook Image Dependencies
    • Dashboards
      • Dashboards
      • Streamlit
    • Preview
    • User-Defined Functions
    • Task Graphs
    • Serverless SQL
    • Monitor
      • Task Log
      • Task Graph Log
  • Scale
    • Introduction
    • Task Graphs
    • API Usage
  • Structure
    • Why Structure Is Important
    • Arrays
      • Introduction
      • Quickstart
      • Foundation
        • Array Data Model
        • Key Concepts
          • Storage
            • Arrays
            • Dimensions
            • Attributes
            • Cells
            • Domain
            • Tiles
            • Data Layout
            • Compression
            • Encryption
            • Tile Filters
            • Array Schema
            • Schema Evolution
            • Fragments
            • Fragment Metadata
            • Commits
            • Indexing
            • Array Metadata
            • Datetimes
            • Groups
            • Object Stores
          • Compute
            • Writes
            • Deletions
            • Consolidation
            • Vacuuming
            • Time Traveling
            • Reads
            • Query Conditions
            • Aggregates
            • User-Defined Functions
            • Distributed Compute
            • Concurrency
            • Parallelism
        • Storage Format Spec
      • Tutorials
        • Basics
          • Basic Dense Array
          • Basic Sparse Array
          • Array Metadata
          • Compression
          • Encryption
          • Data Layout
          • Tile Filters
          • Datetimes
          • Multiple Attributes
          • Variable-Length Attributes
          • String Dimensions
          • Nullable Attributes
          • Multi-Range Reads
          • Query Conditions
          • Aggregates
          • Deletions
          • Catching Errors
          • Configuration
          • Basic S3 Example
          • Basic TileDB Cloud
          • fromDataFrame
          • Palmer Penguins
        • Advanced
          • Schema Evolution
          • Advanced Writes
            • Write at a Timestamp
            • Get Fragment Info
            • Consolidation
              • Fragments
              • Fragment List
              • Consolidation Plan
              • Commits
              • Fragment Metadata
              • Array Metadata
            • Vacuuming
              • Fragments
              • Commits
              • Fragment Metadata
              • Array Metadata
          • Advanced Reads
            • Get Fragment Info
            • Time Traveling
              • Introduction
              • Fragments
              • Array Metadata
              • Schema Evolution
          • Array Upgrade
          • Backends
            • Amazon S3
            • Azure Blob Storage
            • Google Cloud Storage
            • MinIO
            • Lustre
          • Virtual Filesystem
          • User-Defined Functions
          • Distributed Compute
          • Result Estimation
          • Incomplete Queries
        • Management
          • Array Schema
          • Groups
          • Object Management
        • Performance
          • Summary of Factors
          • Dense vs. Sparse
          • Dimensions vs. Attributes
          • Compression
          • Tiling and Data Layout
          • Tuning Writes
          • Tuning Reads
      • API Reference
    • Tables
      • Introduction
      • Quickstart
      • Foundation
        • Data Model
        • Key Concepts
          • Indexes
          • Columnar Storage
          • Compression
          • Data Manipulation
          • Optimize Tables
          • ACID
          • Serverless SQL
          • SQL Connectors
          • Dataframes
          • CSV Ingestion
      • Tutorials
        • Basics
          • Ingestion with SQL
          • CSV Ingestion
          • Basic S3 Example
          • Running Locally
        • Advanced
          • Scalable Ingestion
          • Scalable Queries
      • API Reference
    • AI & ML
      • Vector Search
        • Introduction
        • Quickstart
        • Foundation
          • Data Model
          • Key Concepts
            • Vector Search
            • Vector Databases
            • Algorithms
            • Distance Metrics
            • Updates
            • Deployment Methods
            • Architecture
            • Distributed Compute
          • Storage Format Spec
        • Tutorials
          • Basics
            • Ingestion & Querying
            • Updates
            • Deletions
            • Basic S3 Example
            • Running Locally
          • Advanced
            • Versioning
            • Time Traveling
            • Consolidation
            • Distributed Compute
            • RAG LLM
            • LLM Memory
            • File Search
            • Image Search
            • Protein Search
          • Performance
        • API Reference
      • ML Models
        • Introduction
        • Quickstart
        • Foundation
          • Basics
          • Storage
          • Cloud Execution
          • Why TileDB for Machine Learning
        • Tutorials
          • Ingestion
            • Data Ingestion
              • Dense Datasets
              • Sparse Datasets
            • ML Model Ingestion
          • Management
            • Array Schema
            • Machine Learning: Groups
            • Time Traveling
    • Life Sciences
      • Single-cell
        • Introduction
        • Quickstart
        • Foundation
          • Data Model
          • Key Concepts
            • Data Structures
            • Use of Apache Arrow
            • Join IDs
            • State Management
            • TileDB Cloud URIs
          • SOMA API Specification
        • Tutorials
          • Data Ingestion
          • Bulk Ingestion Tutorial
          • Data Access
          • Distributed Compute
          • Basic S3 Example
          • Multi-Experiment Queries
          • Appending Data to a SOMA Experiment
          • Add New Measurements
          • SQL Queries
          • Running Locally
          • Shapes in TileDB-SOMA
          • Drug Discovery App
        • Spatial
          • Introduction
          • Foundation
            • Spatial Data Model
            • Data Structures
          • Tutorials
            • Spatial Data Ingestion
            • Access Spatial Data
            • Manage Coordinate Spaces
        • API Reference
      • Population Genomics
        • Introduction
        • Quickstart
        • Foundation
          • Data Model
          • Key Concepts
            • The N+1 Problem
            • Architecture
            • Arrays
            • Ingestion
            • Reads
            • Variant Statistics
            • Annotations
            • User-Defined Functions
            • Tables and SQL
            • Distributed Compute
          • Storage Format Spec
        • Tutorials
          • Basics
            • Basic Ingestion
            • Basic Queries
            • Export to VCF
            • Add New Samples
            • Deleting Samples
            • Basic S3 Example
            • Basic TileDB Cloud
          • Advanced
            • Scalable Ingestion
            • Scalable Queries
            • Query Transforms
            • Handling Large Queries
            • Annotations
              • Finding Annotations
              • Embedded Annotations
              • External Annotations
              • Annotation VCFs
              • Ingesting Annotations
            • Variant Statistics
            • Tables and SQL
            • User-Defined Functions
            • Sample Metadata
            • Split VCF
          • Performance
        • API Reference
          • Command Line Interface
          • Python API
          • Cloud API
      • Biomedical Imaging
        • Introduction
        • Foundation
          • Data Model
          • Key Concepts
            • Arrays
            • Ingestion
            • Reads
            • User Defined Functions
          • Storage Format Spec
        • Quickstart
        • Tutorials
          • Basics
            • Ingestion
            • Read
              • OpenSlide
              • TileDB-Py
          • Advanced
            • Batched Ingestion
            • Chunked Ingestion
            • Machine Learning
              • PyTorch
            • Napari
    • Files
  • API Reference
  • Self-Hosting
    • Installation
    • Upgrades
    • Administrative Tasks
    • Image Customization
      • Customize User-Defined Function Images
      • AWS ECR Container Registry
      • Customize Jupyter Notebook Images
    • Single Sign-On
      • Configure Single Sign-On
      • OpenID Connect
      • Okta SCIM
      • Microsoft Entra
  • Glossary
  1. Structure
  2. Arrays
  3. Tutorials
  4. Advanced
  5. Schema Evolution

Run Array Schema Evolution

arrays
tutorials
python
r
schema evolution
As your data and business requirements evolve, so should your array schema. TileDB allows for versioned updates to your array schema.
How to run this tutorial

You can run this tutorial in two ways:

  1. Locally on your machine.
  2. On TileDB Cloud.

However, since TileDB Cloud has a free tier, we strongly recommend that you sign up and run everything there, as that requires no installations or deployment.

This tutorial describes the array schema evolution functionality in TileDB. For more details, visit the Key Concepts: Schema Evolution section.

First, import the necessary libraries, set the array URI (i.e., its path, which in this tutorial will be on local storage), and delete any previously created arrays with the same name.

  • Python
  • R
# Import necessary libraries
import os.path
import shutil

import numpy as np
import tiledb

# Set array URI
array_uri = os.path.expanduser("~/schema_evolution")

# Delete array if it already exists
if os.path.exists(array_uri):
    shutil.rmtree(array_uri)
# Import necessary libraries
library(tiledb)

# Set array URI
array_uri <- path.expand("~/schema_evolution_r")

# Delete array if it already exists
if (file.exists(array_uri)) {
  unlink(array_uri, recursive = TRUE)
}

Next, create an array by specifying its schema. This example uses a dense array, but this described functionality is applicable to sparse arrays as well. The array initially contains two attributes.

  • Python
  • R
# Create the two dimensions
d1 = tiledb.Dim(name="d1", domain=(1, 4), tile=2, dtype=np.int32)
d2 = tiledb.Dim(name="d2", domain=(1, 4), tile=2, dtype=np.int32)

# Create a domain using the two dimensions
dom = tiledb.Domain(d1, d2)

# Create two attributes
a1 = tiledb.Attr(name="a1", dtype=np.int32)
a2 = tiledb.Attr(name="a2", dtype=np.float32)

# Create the array schema, setting `sparse=False` to indicate a dense array.
sch = tiledb.ArraySchema(domain=dom, sparse=False, attrs=[a1, a2])

# Create the array on disk (it will initially be empty)
tiledb.Array.create(array_uri, sch)
# Create the two dimensions
d1 <- tiledb_dim("d1", c(1L, 4L), 2L, "INT32")
d2 <- tiledb_dim("d2", c(1L, 4L), 2L, "INT32")

# Create a domain using the two dimensions
dom <- tiledb_domain(dims = c(d1, d2))

# Create two attributes
a1 <- tiledb_attr("a1", type = "INT32")
a2 <- tiledb_attr("a2", type = "FLOAT64")

# Create the array schema, setting `sparse = FALSE` to indicate a dense array
sch <- tiledb_array_schema(dom, c(a1, a2), sparse = FALSE)

# Create the array on disk (it will initially be empty)
arr <- tiledb_array_create(array_uri, sch)

Populate the TileDB array using 2-dimensional input arrays, one for each attribute.

  • Python
  • R
# Prepare some data in NumPy arrays
a1_data = np.array(
    [[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16]], dtype=np.int32
)
a2_data = np.array(
    [
        [1.1, 2.2, 3.3, 4.4],
        [5.5, 6.6, 7.7, 8.8],
        [9.9, 10.10, 11.11, 12.12],
        [13.13, 14.14, 15.15, 16.16],
    ],
    dtype=np.float32,
)

# Write data to the array
with tiledb.open(array_uri, "w") as A:
    A[:] = {"a1": a1_data, "a2": a2_data}
# Prepare some data in two arrays, one for each attribute
a1_data <- t(array(1:16, dim = c(4, 4)))

a2_data <- array(
  c(
    1.1, 2.2, 3.3, 4.4,
    5.5, 6.6, 7.7, 8.8,
    9.9, 10.10, 11.11, 12.12,
    13.13, 14.14, 15.15, 16.16
  ),
  dim = c(4L, 4L)
)

# Open the array for writing and write data to the array
arr <- tiledb_array(
  uri = array_uri,
  query_type = "WRITE",
  return_as = "data.frame"
)

arr[] <- list(
  a1 = a1_data,
  a2 = a2_data
)

# Close the array
arr <- tiledb_array_close(arr)

The array schema and contents at this moment are as follows.

  • Python
  • R
with tiledb.open(array_uri, "r") as A:
    print(A.schema)
    print(A[:])
ArraySchema(
  domain=Domain(*[
    Dim(name='d1', domain=(1, 4), tile=2, dtype='int32', filters=FilterList([ZstdFilter(level=-1), ])),
    Dim(name='d2', domain=(1, 4), tile=2, dtype='int32', filters=FilterList([ZstdFilter(level=-1), ])),
  ]),
  attrs=[
    Attr(name='a1', dtype='int32', var=False, nullable=False, enum_label=None),
    Attr(name='a2', dtype='float32', var=False, nullable=False, enum_label=None),
  ],
  cell_order='row-major',
  tile_order='row-major',
  sparse=False,
)

OrderedDict({'a1': array([[ 1,  2,  3,  4],
       [ 5,  6,  7,  8],
       [ 9, 10, 11, 12],
       [13, 14, 15, 16]], dtype=int32), 'a2': array([[ 1.1 ,  2.2 ,  3.3 ,  4.4 ],
       [ 5.5 ,  6.6 ,  7.7 ,  8.8 ],
       [ 9.9 , 10.1 , 11.11, 12.12],
       [13.13, 14.14, 15.15, 16.16]], dtype=float32)})
arr <- tiledb_array_open(arr)
print(schema(arr))
print(arr[])
tiledb_array_schema(
    domain=tiledb_domain(c(
        tiledb_dim(name="d1", domain=c(1L,4L), tile=2L, type="INT32", filter_list=tiledb_filter_list(c(tiledb_filter_set_option(tiledb_filter("ZSTD"),"COMPRESSION_LEVEL",-1)))),
        tiledb_dim(name="d2", domain=c(1L,4L), tile=2L, type="INT32", filter_list=tiledb_filter_list(c(tiledb_filter_set_option(tiledb_filter("ZSTD"),"COMPRESSION_LEVEL",-1))))
    )),
    attrs=c(
        tiledb_attr(name="a1", type="INT32", ncells=1, nullable=FALSE),
        tiledb_attr(name="a2", type="FLOAT64", ncells=1, nullable=FALSE)
    ),
    cell_order="COL_MAJOR", tile_order="COL_MAJOR", capacity=10000, sparse=FALSE, allows_dups=FALSE,
    coords_filter_list=tiledb_filter_list(c(tiledb_filter_set_option(tiledb_filter("ZSTD"),"COMPRESSION_LEVEL",-1))),
    offsets_filter_list=tiledb_filter_list(c(tiledb_filter_set_option(tiledb_filter("ZSTD"),"COMPRESSION_LEVEL",-1))),
    validity_filter_list=tiledb_filter_list(c(tiledb_filter_set_option(tiledb_filter("RLE"),"COMPRESSION_LEVEL",-1)))
)
   d1 d2 a1    a2
1   1  1  1  1.10
2   2  1  5  2.20
3   3  1  9  3.30
4   4  1 13  4.40
5   1  2  2  5.50
6   2  2  6  6.60
7   3  2 10  7.70
8   4  2 14  8.80
9   1  3  3  9.90
10  2  3  7 10.10
11  3  3 11 11.11
12  4  3 15 12.12
13  1  4  4 13.13
14  2  4  8 14.14
15  3  4 12 15.15
16  4  4 16 16.16

Drop attribute a1 from the array.

  • Python
  • R
se = tiledb.ArraySchemaEvolution()
se.drop_attribute("a1")
se.array_evolve(array_uri)
se <- tiledb_array_schema_evolution()
tiledb_array_schema_evolution_drop_attribute(se, "a1")
tiledb_array_schema_evolution_array_evolve(se, array_uri)

The array schema and contents after this change are as follows.

  • Python
  • R
with tiledb.open(array_uri, "r") as A:
    print(A.schema)
    print(A[:])
ArraySchema(
  domain=Domain(*[
    Dim(name='d1', domain=(1, 4), tile=2, dtype='int32', filters=FilterList([ZstdFilter(level=-1), ])),
    Dim(name='d2', domain=(1, 4), tile=2, dtype='int32', filters=FilterList([ZstdFilter(level=-1), ])),
  ]),
  attrs=[
    Attr(name='a2', dtype='float32', var=False, nullable=False, enum_label=None),
  ],
  cell_order='row-major',
  tile_order='row-major',
  sparse=False,
)

OrderedDict({'a2': array([[ 1.1 ,  2.2 ,  3.3 ,  4.4 ],
       [ 5.5 ,  6.6 ,  7.7 ,  8.8 ],
       [ 9.9 , 10.1 , 11.11, 12.12],
       [13.13, 14.14, 15.15, 16.16]], dtype=float32)})
print(schema(arr))
print(arr[])
tiledb_array_schema(
    domain=tiledb_domain(c(
        tiledb_dim(name="d1", domain=c(1L,4L), tile=2L, type="INT32", filter_list=tiledb_filter_list(c(tiledb_filter_set_option(tiledb_filter("ZSTD"),"COMPRESSION_LEVEL",-1)))),
        tiledb_dim(name="d2", domain=c(1L,4L), tile=2L, type="INT32", filter_list=tiledb_filter_list(c(tiledb_filter_set_option(tiledb_filter("ZSTD"),"COMPRESSION_LEVEL",-1))))
    )),
    attrs=c(
        tiledb_attr(name="a2", type="FLOAT64", ncells=1, nullable=FALSE)
    ),
    cell_order="COL_MAJOR", tile_order="COL_MAJOR", capacity=10000, sparse=FALSE, allows_dups=FALSE,
    coords_filter_list=tiledb_filter_list(c(tiledb_filter_set_option(tiledb_filter("ZSTD"),"COMPRESSION_LEVEL",-1))),
    offsets_filter_list=tiledb_filter_list(c(tiledb_filter_set_option(tiledb_filter("ZSTD"),"COMPRESSION_LEVEL",-1))),
    validity_filter_list=tiledb_filter_list(c(tiledb_filter_set_option(tiledb_filter("RLE"),"COMPRESSION_LEVEL",-1)))
)
   d1 d2    a2
1   1  1  1.10
2   2  1  2.20
3   3  1  3.30
4   4  1  4.40
5   1  2  5.50
6   2  2  6.60
7   3  2  7.70
8   4  2  8.80
9   1  3  9.90
10  2  3 10.10
11  3  3 11.11
12  4  3 12.12
13  1  4 13.13
14  2  4 14.14
15  3  4 15.15
16  4  4 16.16

Add a new attribute a to the array.

  • Python
  • R
a = tiledb.Attr("a", dtype=np.int8)
se = tiledb.ArraySchemaEvolution()
se.add_attribute(a)
se.array_evolve(array_uri)
a <- tiledb_attr("a", type = "INT8")
se <- tiledb_array_schema_evolution()
tiledb_array_schema_evolution_add_attribute(se, a)
tiledb_array_schema_evolution_array_evolve(se, array_uri)

The array schema and contents after this second change are as follows. Observe that attribute a has no contents (value -128 is a fill value that in this case indicates an empty cell).

  • Python
  • R
with tiledb.open(array_uri, "r") as A:
    print(A.schema)
    print(A[:])
ArraySchema(
  domain=Domain(*[
    Dim(name='d1', domain=(1, 4), tile=2, dtype='int32', filters=FilterList([ZstdFilter(level=-1), ])),
    Dim(name='d2', domain=(1, 4), tile=2, dtype='int32', filters=FilterList([ZstdFilter(level=-1), ])),
  ]),
  attrs=[
    Attr(name='a2', dtype='float32', var=False, nullable=False, enum_label=None),
    Attr(name='a', dtype='int8', var=False, nullable=False, enum_label=None),
  ],
  cell_order='row-major',
  tile_order='row-major',
  sparse=False,
)

OrderedDict({'a2': array([[ 1.1 ,  2.2 ,  3.3 ,  4.4 ],
       [ 5.5 ,  6.6 ,  7.7 ,  8.8 ],
       [ 9.9 , 10.1 , 11.11, 12.12],
       [13.13, 14.14, 15.15, 16.16]], dtype=float32), 'a': array([[-128, -128, -128, -128],
       [-128, -128, -128, -128],
       [-128, -128, -128, -128],
       [-128, -128, -128, -128]], dtype=int8)})
print(schema(arr))
print(arr[])
arr <- tiledb_array_close(arr)
tiledb_array_schema(
    domain=tiledb_domain(c(
        tiledb_dim(name="d1", domain=c(1L,4L), tile=2L, type="INT32", filter_list=tiledb_filter_list(c(tiledb_filter_set_option(tiledb_filter("ZSTD"),"COMPRESSION_LEVEL",-1)))),
        tiledb_dim(name="d2", domain=c(1L,4L), tile=2L, type="INT32", filter_list=tiledb_filter_list(c(tiledb_filter_set_option(tiledb_filter("ZSTD"),"COMPRESSION_LEVEL",-1))))
    )),
    attrs=c(
        tiledb_attr(name="a2", type="FLOAT64", ncells=1, nullable=FALSE),
        tiledb_attr(name="a", type="INT8", ncells=1, nullable=FALSE)
    ),
    cell_order="COL_MAJOR", tile_order="COL_MAJOR", capacity=10000, sparse=FALSE, allows_dups=FALSE,
    coords_filter_list=tiledb_filter_list(c(tiledb_filter_set_option(tiledb_filter("ZSTD"),"COMPRESSION_LEVEL",-1))),
    offsets_filter_list=tiledb_filter_list(c(tiledb_filter_set_option(tiledb_filter("ZSTD"),"COMPRESSION_LEVEL",-1))),
    validity_filter_list=tiledb_filter_list(c(tiledb_filter_set_option(tiledb_filter("RLE"),"COMPRESSION_LEVEL",-1)))
)
   d1 d2    a2    a
1   1  1  1.10 -128
2   2  1  2.20 -128
3   3  1  3.30 -128
4   4  1  4.40 -128
5   1  2  5.50 -128
6   2  2  6.60 -128
7   3  2  7.70 -128
8   4  2  8.80 -128
9   1  3  9.90 -128
10  2  3 10.10 -128
11  3  3 11.11 -128
12  4  3 12.12 -128
13  1  4 13.13 -128
14  2  4 14.14 -128
15  3  4 15.15 -128
16  4  4 16.16 -128

Clean up in the end by deleting the array.

  • Python
  • R
# Delete the array
if os.path.exists(array_uri):
    shutil.rmtree(array_uri)
if (file.exists(array_uri)) {
  unlink(array_uri, recursive = TRUE)
}
Note

If you wish to evolve the schema at a particular timestamp, similar to writing at a timestamp for fragments and array metadata (visit the Tutorials: Writing at a Timestamp section for details), you can set a timestamp to the schema evolution object. For an example, see how this is used in the Tutorials: Time Traveling - Schema Evolution section.

Advanced
Advanced Writes