1. Structure
  2. Life Sciences
  3. Population Genomics
  4. Tutorials
  5. Advanced
  6. Sample Metadata
  • Home
  • What is TileDB?
  • Get Started
  • Explore Content
  • Accounts
    • Individual Accounts
      • Apply for the Free Tier
      • Profile
        • Overview
        • Cloud Credentials
        • Storage Paths
        • REST API Tokens
        • Credits
    • Organization Admins
      • Create an Organization
      • Profile
        • Overview
        • Members
        • Cloud Credentials
        • Storage Paths
        • Billing
      • API Tokens
    • Organization Members
      • Organization Invitations
      • Profile
        • Overview
        • Members
        • Cloud Credentials
        • Storage Paths
        • Billing
      • API Tokens
  • Catalog
    • Introduction
    • Data
      • Arrays
      • Tables
      • Single-Cell (SOMA)
      • Genomics (VCF)
      • Biomedical Imaging
      • Vector Search
      • Files
    • Code
      • Notebooks
      • Dashboards
      • User-Defined Functions
      • Task Graphs
      • ML Models
    • Groups
    • Marketplace
    • Search
  • Collaborate
    • Introduction
    • Organizations
    • Access Control
      • Introduction
      • Share Assets
      • Asset Permissions
      • Public Assets
    • Logging
    • Marketplace
  • Analyze
    • Introduction
    • Slice Data
    • Multi-Region Redirection
    • Notebooks
      • Launch a Notebook
      • Usage
      • Widgets
      • Notebook Image Dependencies
    • Dashboards
      • Dashboards
      • Streamlit
    • Preview
    • User-Defined Functions
    • Task Graphs
    • Serverless SQL
    • Monitor
      • Task Log
      • Task Graph Log
  • Scale
    • Introduction
    • Task Graphs
    • API Usage
  • Structure
    • Why Structure Is Important
    • Arrays
      • Introduction
      • Quickstart
      • Foundation
        • Array Data Model
        • Key Concepts
          • Storage
            • Arrays
            • Dimensions
            • Attributes
            • Cells
            • Domain
            • Tiles
            • Data Layout
            • Compression
            • Encryption
            • Tile Filters
            • Array Schema
            • Schema Evolution
            • Fragments
            • Fragment Metadata
            • Commits
            • Indexing
            • Array Metadata
            • Datetimes
            • Groups
            • Object Stores
          • Compute
            • Writes
            • Deletions
            • Consolidation
            • Vacuuming
            • Time Traveling
            • Reads
            • Query Conditions
            • Aggregates
            • User-Defined Functions
            • Distributed Compute
            • Concurrency
            • Parallelism
        • Storage Format Spec
      • Tutorials
        • Basics
          • Basic Dense Array
          • Basic Sparse Array
          • Array Metadata
          • Compression
          • Encryption
          • Data Layout
          • Tile Filters
          • Datetimes
          • Multiple Attributes
          • Variable-Length Attributes
          • String Dimensions
          • Nullable Attributes
          • Multi-Range Reads
          • Query Conditions
          • Aggregates
          • Deletions
          • Catching Errors
          • Configuration
          • Basic S3 Example
          • Basic TileDB Cloud
          • fromDataFrame
          • Palmer Penguins
        • Advanced
          • Schema Evolution
          • Advanced Writes
            • Write at a Timestamp
            • Get Fragment Info
            • Consolidation
              • Fragments
              • Fragment List
              • Consolidation Plan
              • Commits
              • Fragment Metadata
              • Array Metadata
            • Vacuuming
              • Fragments
              • Commits
              • Fragment Metadata
              • Array Metadata
          • Advanced Reads
            • Get Fragment Info
            • Time Traveling
              • Introduction
              • Fragments
              • Array Metadata
              • Schema Evolution
          • Array Upgrade
          • Backends
            • Amazon S3
            • Azure Blob Storage
            • Google Cloud Storage
            • MinIO
            • Lustre
          • Virtual Filesystem
          • User-Defined Functions
          • Distributed Compute
          • Result Estimation
          • Incomplete Queries
        • Management
          • Array Schema
          • Groups
          • Object Management
        • Performance
          • Summary of Factors
          • Dense vs. Sparse
          • Dimensions vs. Attributes
          • Compression
          • Tiling and Data Layout
          • Tuning Writes
          • Tuning Reads
      • API Reference
    • Tables
      • Introduction
      • Quickstart
      • Foundation
        • Data Model
        • Key Concepts
          • Indexes
          • Columnar Storage
          • Compression
          • Data Manipulation
          • Optimize Tables
          • ACID
          • Serverless SQL
          • SQL Connectors
          • Dataframes
          • CSV Ingestion
      • Tutorials
        • Basics
          • Ingestion with SQL
          • CSV Ingestion
          • Basic S3 Example
          • Running Locally
        • Advanced
          • Scalable Ingestion
          • Scalable Queries
      • API Reference
    • AI & ML
      • Vector Search
        • Introduction
        • Quickstart
        • Foundation
          • Data Model
          • Key Concepts
            • Vector Search
            • Vector Databases
            • Algorithms
            • Distance Metrics
            • Updates
            • Deployment Methods
            • Architecture
            • Distributed Compute
          • Storage Format Spec
        • Tutorials
          • Basics
            • Ingestion & Querying
            • Updates
            • Deletions
            • Basic S3 Example
            • Running Locally
          • Advanced
            • Versioning
            • Time Traveling
            • Consolidation
            • Distributed Compute
            • RAG LLM
            • LLM Memory
            • File Search
            • Image Search
            • Protein Search
          • Performance
        • API Reference
      • ML Models
        • Introduction
        • Quickstart
        • Foundation
          • Basics
          • Storage
          • Cloud Execution
          • Why TileDB for Machine Learning
        • Tutorials
          • Ingestion
            • Data Ingestion
              • Dense Datasets
              • Sparse Datasets
            • ML Model Ingestion
          • Management
            • Array Schema
            • Machine Learning: Groups
            • Time Traveling
    • Life Sciences
      • Single-cell
        • Introduction
        • Quickstart
        • Foundation
          • Data Model
          • Key Concepts
            • Data Structures
            • Use of Apache Arrow
            • Join IDs
            • State Management
            • TileDB Cloud URIs
          • SOMA API Specification
        • Tutorials
          • Data Ingestion
          • Bulk Ingestion Tutorial
          • Data Access
          • Distributed Compute
          • Basic S3 Example
          • Multi-Experiment Queries
          • Appending Data to a SOMA Experiment
          • Add New Measurements
          • SQL Queries
          • Running Locally
          • Shapes in TileDB-SOMA
          • Drug Discovery App
        • Spatial
          • Introduction
          • Foundation
            • Spatial Data Model
            • Data Structures
          • Tutorials
            • Spatial Data Ingestion
            • Access Spatial Data
            • Manage Coordinate Spaces
        • API Reference
      • Population Genomics
        • Introduction
        • Quickstart
        • Foundation
          • Data Model
          • Key Concepts
            • The N+1 Problem
            • Architecture
            • Arrays
            • Ingestion
            • Reads
            • Variant Statistics
            • Annotations
            • User-Defined Functions
            • Tables and SQL
            • Distributed Compute
          • Storage Format Spec
        • Tutorials
          • Basics
            • Basic Ingestion
            • Basic Queries
            • Export to VCF
            • Add New Samples
            • Deleting Samples
            • Basic S3 Example
            • Basic TileDB Cloud
          • Advanced
            • Scalable Ingestion
            • Scalable Queries
            • Query Transforms
            • Handling Large Queries
            • Annotations
              • Finding Annotations
              • Embedded Annotations
              • External Annotations
              • Annotation VCFs
              • Ingesting Annotations
            • Variant Statistics
            • Tables and SQL
            • User-Defined Functions
            • Sample Metadata
            • Split VCF
          • Performance
        • API Reference
          • Command Line Interface
          • Python API
          • Cloud API
      • Biomedical Imaging
        • Introduction
        • Foundation
          • Data Model
          • Key Concepts
            • Arrays
            • Ingestion
            • Reads
            • User Defined Functions
          • Storage Format Spec
        • Quickstart
        • Tutorials
          • Basics
            • Ingestion
            • Read
              • OpenSlide
              • TileDB-Py
          • Advanced
            • Batched Ingestion
            • Chunked Ingestion
            • Machine Learning
              • PyTorch
            • Napari
    • Files
  • API Reference
  • Self-Hosting
    • Installation
    • Upgrades
    • Administrative Tasks
    • Image Customization
      • Customize User-Defined Function Images
      • AWS ECR Container Registry
      • Customize Jupyter Notebook Images
    • Single Sign-On
      • Configure Single Sign-On
      • OpenID Connect
      • Okta SCIM
      • Microsoft Entra
  • Glossary

On this page

  • Pull an example dataset
  • Simulate metadata
  • Query
  • Summary
  1. Structure
  2. Life Sciences
  3. Population Genomics
  4. Tutorials
  5. Advanced
  6. Sample Metadata

Sample Metadata

life sciences
genomics (vcf)
tutorials
metadata
Learn how to extend TileDB-VCF with the help of TileDB arrays to perform complex queries with this tutorial.
How to run this tutorial

You can run this tutorial in two ways:

  1. Locally on your machine.
  2. On TileDB Cloud.

However, since TileDB Cloud has a free tier, we strongly recommend that you sign up and run everything there, as that requires no installations or deployment.

The TileDB-VCF API ingests variant data for rapid access into a 3D array. One of these three dimensions corresponds to the sample_name of the variant data. This enables consumers to query their dataset by one or more samples, extracting attributes for that sample.

Sometimes, for more complex experiments, it may be necessary to generate sample cohorts to use for querying a tiledbvcf.Dataset as a prerequisite step. For example, a researcher may desire to pull all variant data from a tiledbvcf.Dataset related to a particular patient ID, where a patient may have a 1-to-1 or 1-to-many relationship with samples. Because that information isn’t stored in VCF files and, as a result, is not included in a tiledbvcf.Dataset, you can use an accompanying array relating patient ID to sample_name. With this setup, you would first query the array for all samples belonging to a patient and then those samples used to query the tiledbvcf.Dataset.

In this tutorial, you’ll learn how to extend TileDB-VCF with the help of TileDB arrays to perform complex queries.

  • Python
import os
import shutil

import pandas as pd
import tiledb
import tiledbvcf

print("TileDB core version: {}".format(tiledb.libtiledb.version()))
print("TileDB-Py version: {}".format(tiledb.version()))
print("TileDB-VCF version: {}".format(tiledbvcf.version))
TileDB core version: (2, 24, 2)
TileDB-Py version: (0, 30, 2)
TileDB-VCF version: 0.30.0rc0

Pull an example dataset

First, pull a public TileDB-VCF dataset and choose some random samples for this tutorial. The TileDB team has made available several public TileDB-VCF datasets.

This tutorial uses the Chr15 canine dataset to explore canine variant data.

  • Python
ds = tiledbvcf.Dataset("tiledb://TileDB-Inc/NHGRI_dog_chr15", mode="r")

query_samples = ds.samples()[-4:]
print(query_samples)
['YorkshireTerrier73', 'YorkshireTerrier75', 'YorkshireTerrier76', 'YorkshireTerrier77']

Simulate metadata

Now that you have a tiledbvcf.Dataset and some example sample names, simulate some corresponding metadata. This metadata will include other observations related to those samples such as parent, weight, and whether the sample is a pure breed. First create a pandas.DataFrame and then convert that to an array.

  • Python
metadata_df = pd.DataFrame(
    {
        "Sample": query_samples,
        "Parent": ["X400", "X400", "X301", "X203"],
        "Weight": [45, 23, 11, 57],
        "PureBreed": [True, True, False, True],
    },
)

metadata_uri = "local_metadata_array"


def convert():
    """Convert pandas.DataFrame to TileDB array.

    Delete array if it exists.
    """

    try:
        tiledb.from_pandas(
            metadata_uri,
            metadata_df,
            index_dims=["Sample"],
        )
    except tiledb.TileDBError:
        print("Array already exists, refreshing.")
        if os.path.exists(metadata_uri):
            shutil.rmtree(metadata_uri)

        convert()


convert()

Verifying the schema looks as expected.

Note that during the array transformation, TileDB established the data types in the metadata array schema because the original types were not explicitly defined by the caller. Most data types should look familiar, with the exception of the Parent attribute, which is of type <U0. This represents a variable-length Unicode string in numpy, as described here.

  • Python
with tiledb.open(metadata_uri, "r") as Ar:
    print(Ar.schema)
ArraySchema(
  domain=Domain(*[
    Dim(name='Sample', domain=('', ''), tile=None, dtype='|S0', var=True, filters=FilterList([ZstdFilter(level=-1), ])),
  ]),
  attrs=[
    Attr(name='Parent', dtype='<U0', var=True, nullable=False, enum_label=None, filters=FilterList([ZstdFilter(level=-1), ])),
    Attr(name='Weight', dtype='int64', var=False, nullable=False, enum_label=None, filters=FilterList([ZstdFilter(level=-1), ])),
    Attr(name='PureBreed', dtype='bool', var=False, nullable=False, enum_label=None, filters=FilterList([ZstdFilter(level=-1), ])),
  ],
  cell_order='row-major',
  tile_order='row-major',
  capacity=10000,
  sparse=True,
  allows_duplicates=True,
)

Query

Starting with a given Parent, query the metadata array to extract sample names to subsequently query the tiledbvcf.Dataset.

  • Python
# example parent we'd like to get samples for
query_parent = "X400"

with tiledb.open(metadata_uri, "r") as Ar:
    # query metadata array for
    sample_result = Ar.query(cond=f"Parent == '{query_parent}'")[:]

samples = [s.decode() for s in sample_result["Sample"]]
print(samples)
['YorkshireTerrier73', 'YorkshireTerrier75']
  • Python
variant_results = ds.read(
    regions=["chr15:1-5000"],
    samples=samples,
    attrs=[
        "sample_name",
        "contig",
        "pos_start",
        "pos_end",
        "alleles",
        "fmt_GT",
    ],
)

print(variant_results)
            sample_name contig  pos_start  pos_end  alleles    fmt_GT
0    YorkshireTerrier73  chr15        177      177   [T, G]  [-1, -1]
1    YorkshireTerrier75  chr15        177      177   [T, G]  [-1, -1]
2    YorkshireTerrier73  chr15        213      213   [C, A]    [0, 0]
3    YorkshireTerrier75  chr15        213      213   [C, A]    [0, 0]
4    YorkshireTerrier73  chr15        231      231   [C, T]    [0, 0]
..                  ...    ...        ...      ...      ...       ...
983  YorkshireTerrier75  chr15       4980     4980   [C, T]    [0, 0]
984  YorkshireTerrier73  chr15       4985     4986  [CG, C]    [0, 0]
985  YorkshireTerrier75  chr15       4985     4986  [CG, C]    [0, 0]
986  YorkshireTerrier73  chr15       4994     4995  [CT, C]    [0, 0]
987  YorkshireTerrier75  chr15       4994     4995  [CT, C]  [-1, -1]

[988 rows x 6 columns]

Summary

As demonstrated here, storing metadata in a separate array is a useful strategy for querying a tiledbvcf.Dataset using supporting data to the TileDB-VCF API.

User-Defined Functions
Split VCF