1. Structure
  2. Arrays
  3. Tutorials
  4. Advanced
  5. Advanced Writes
  6. Consolidation
  7. Fragments
  • Home
  • What is TileDB?
  • Get Started
  • Explore Content
  • Accounts
    • Individual Accounts
      • Apply for the Free Tier
      • Profile
        • Overview
        • Cloud Credentials
        • Storage Paths
        • REST API Tokens
        • Credits
    • Organization Admins
      • Create an Organization
      • Profile
        • Overview
        • Members
        • Cloud Credentials
        • Storage Paths
        • Billing
      • API Tokens
    • Organization Members
      • Organization Invitations
      • Profile
        • Overview
        • Members
        • Cloud Credentials
        • Storage Paths
        • Billing
      • API Tokens
  • Catalog
    • Introduction
    • Data
      • Arrays
      • Tables
      • Single-Cell (SOMA)
      • Genomics (VCF)
      • Biomedical Imaging
      • Vector Search
      • Files
    • Code
      • Notebooks
      • Dashboards
      • User-Defined Functions
      • Task Graphs
      • ML Models
    • Groups
    • Marketplace
    • Search
  • Collaborate
    • Introduction
    • Organizations
    • Access Control
      • Introduction
      • Share Assets
      • Asset Permissions
      • Public Assets
    • Logging
    • Marketplace
  • Analyze
    • Introduction
    • Slice Data
    • Multi-Region Redirection
    • Notebooks
      • Launch a Notebook
      • Usage
      • Widgets
      • Notebook Image Dependencies
    • Dashboards
      • Dashboards
      • Streamlit
    • Preview
    • User-Defined Functions
    • Task Graphs
    • Serverless SQL
    • Monitor
      • Task Log
      • Task Graph Log
  • Scale
    • Introduction
    • Task Graphs
    • API Usage
  • Structure
    • Why Structure Is Important
    • Arrays
      • Introduction
      • Quickstart
      • Foundation
        • Array Data Model
        • Key Concepts
          • Storage
            • Arrays
            • Dimensions
            • Attributes
            • Cells
            • Domain
            • Tiles
            • Data Layout
            • Compression
            • Encryption
            • Tile Filters
            • Array Schema
            • Schema Evolution
            • Fragments
            • Fragment Metadata
            • Commits
            • Indexing
            • Array Metadata
            • Datetimes
            • Groups
            • Object Stores
          • Compute
            • Writes
            • Deletions
            • Consolidation
            • Vacuuming
            • Time Traveling
            • Reads
            • Query Conditions
            • Aggregates
            • User-Defined Functions
            • Distributed Compute
            • Concurrency
            • Parallelism
        • Storage Format Spec
      • Tutorials
        • Basics
          • Basic Dense Array
          • Basic Sparse Array
          • Array Metadata
          • Compression
          • Encryption
          • Data Layout
          • Tile Filters
          • Datetimes
          • Multiple Attributes
          • Variable-Length Attributes
          • String Dimensions
          • Nullable Attributes
          • Multi-Range Reads
          • Query Conditions
          • Aggregates
          • Deletions
          • Catching Errors
          • Configuration
          • Basic S3 Example
          • Basic TileDB Cloud
          • fromDataFrame
          • Palmer Penguins
        • Advanced
          • Schema Evolution
          • Advanced Writes
            • Write at a Timestamp
            • Get Fragment Info
            • Consolidation
              • Fragments
              • Fragment List
              • Consolidation Plan
              • Commits
              • Fragment Metadata
              • Array Metadata
            • Vacuuming
              • Fragments
              • Commits
              • Fragment Metadata
              • Array Metadata
          • Advanced Reads
            • Get Fragment Info
            • Time Traveling
              • Introduction
              • Fragments
              • Array Metadata
              • Schema Evolution
          • Array Upgrade
          • Backends
            • Amazon S3
            • Azure Blob Storage
            • Google Cloud Storage
            • MinIO
            • Lustre
          • Virtual Filesystem
          • User-Defined Functions
          • Distributed Compute
          • Result Estimation
          • Incomplete Queries
        • Management
          • Array Schema
          • Groups
          • Object Management
        • Performance
          • Summary of Factors
          • Dense vs. Sparse
          • Dimensions vs. Attributes
          • Compression
          • Tiling and Data Layout
          • Tuning Writes
          • Tuning Reads
      • API Reference
    • Tables
      • Introduction
      • Quickstart
      • Foundation
        • Data Model
        • Key Concepts
          • Indexes
          • Columnar Storage
          • Compression
          • Data Manipulation
          • Optimize Tables
          • ACID
          • Serverless SQL
          • SQL Connectors
          • Dataframes
          • CSV Ingestion
      • Tutorials
        • Basics
          • Ingestion with SQL
          • CSV Ingestion
          • Basic S3 Example
          • Running Locally
        • Advanced
          • Scalable Ingestion
          • Scalable Queries
      • API Reference
    • AI & ML
      • Vector Search
        • Introduction
        • Quickstart
        • Foundation
          • Data Model
          • Key Concepts
            • Vector Search
            • Vector Databases
            • Algorithms
            • Distance Metrics
            • Updates
            • Deployment Methods
            • Architecture
            • Distributed Compute
          • Storage Format Spec
        • Tutorials
          • Basics
            • Ingestion & Querying
            • Updates
            • Deletions
            • Basic S3 Example
            • Running Locally
          • Advanced
            • Versioning
            • Time Traveling
            • Consolidation
            • Distributed Compute
            • RAG LLM
            • LLM Memory
            • File Search
            • Image Search
            • Protein Search
          • Performance
        • API Reference
      • ML Models
        • Introduction
        • Quickstart
        • Foundation
          • Basics
          • Storage
          • Cloud Execution
          • Why TileDB for Machine Learning
        • Tutorials
          • Ingestion
            • Data Ingestion
              • Dense Datasets
              • Sparse Datasets
            • ML Model Ingestion
          • Management
            • Array Schema
            • Machine Learning: Groups
            • Time Traveling
    • Life Sciences
      • Single-cell
        • Introduction
        • Quickstart
        • Foundation
          • Data Model
          • Key Concepts
            • Data Structures
            • Use of Apache Arrow
            • Join IDs
            • State Management
            • TileDB Cloud URIs
          • SOMA API Specification
        • Tutorials
          • Data Ingestion
          • Bulk Ingestion Tutorial
          • Data Access
          • Distributed Compute
          • Basic S3 Example
          • Multi-Experiment Queries
          • Appending Data to a SOMA Experiment
          • Add New Measurements
          • SQL Queries
          • Running Locally
          • Shapes in TileDB-SOMA
          • Drug Discovery App
        • Spatial
          • Introduction
          • Foundation
            • Spatial Data Model
            • Data Structures
          • Tutorials
            • Spatial Data Ingestion
            • Access Spatial Data
            • Manage Coordinate Spaces
        • API Reference
      • Population Genomics
        • Introduction
        • Quickstart
        • Foundation
          • Data Model
          • Key Concepts
            • The N+1 Problem
            • Architecture
            • Arrays
            • Ingestion
            • Reads
            • Variant Statistics
            • Annotations
            • User-Defined Functions
            • Tables and SQL
            • Distributed Compute
          • Storage Format Spec
        • Tutorials
          • Basics
            • Basic Ingestion
            • Basic Queries
            • Export to VCF
            • Add New Samples
            • Deleting Samples
            • Basic S3 Example
            • Basic TileDB Cloud
          • Advanced
            • Scalable Ingestion
            • Scalable Queries
            • Query Transforms
            • Handling Large Queries
            • Annotations
              • Finding Annotations
              • Embedded Annotations
              • External Annotations
              • Annotation VCFs
              • Ingesting Annotations
            • Variant Statistics
            • Tables and SQL
            • User-Defined Functions
            • Sample Metadata
            • Split VCF
          • Performance
        • API Reference
          • Command Line Interface
          • Python API
          • Cloud API
      • Biomedical Imaging
        • Introduction
        • Foundation
          • Data Model
          • Key Concepts
            • Arrays
            • Ingestion
            • Reads
            • User Defined Functions
          • Storage Format Spec
        • Quickstart
        • Tutorials
          • Basics
            • Ingestion
            • Read
              • OpenSlide
              • TileDB-Py
          • Advanced
            • Batched Ingestion
            • Chunked Ingestion
            • Machine Learning
              • PyTorch
            • Napari
    • Files
  • API Reference
  • Self-Hosting
    • Installation
    • Upgrades
    • Administrative Tasks
    • Image Customization
      • Customize User-Defined Function Images
      • AWS ECR Container Registry
      • Customize Jupyter Notebook Images
    • Single Sign-On
      • Configure Single Sign-On
      • OpenID Connect
      • Okta SCIM
      • Microsoft Entra
  • Glossary
  1. Structure
  2. Arrays
  3. Tutorials
  4. Advanced
  5. Advanced Writes
  6. Consolidation
  7. Fragments

Consolidate Fragments

arrays
tutorials
python
r
fragments
consolidation
Consolidating fragments will help boost read performance. You can learn about consolidating fragments in this tutorial.
How to run this tutorial

You can run this tutorial in two ways:

  1. Locally on your machine.
  2. On TileDB Cloud.

However, since TileDB Cloud has a free tier, we strongly recommend that you sign up and run everything there, as that requires no installations or deployment.

This tutorial demonstrates how to consolidate fragments of arrays. Before running this tutorial, it is recommended that you read the following sections:

  • Key Concepts: Consolidation
  • Key Concepts: Vacuuming

First, import the necessary libraries, set the array URI (i.e., its path, which in this tutorial will be on local storage), and delete any previously created arrays with the same name.

  • Python
  • R
# Import necessary libraries
import os.path
import shutil

import numpy as np
import tiledb

# Set array URI
array_uri = os.path.expanduser("~/consolidation_fragments")

# Delete array if it already exists
if os.path.exists(array_uri):
    shutil.rmtree(array_uri)
# Import necessary libraries
library(tiledb)

# Set array URI
array_uri <- path.expand("~/consolidation_fragments_r")

# Delete array if it already exists
if (file.exists(array_uri)) {
  unlink(array_uri, recursive = TRUE)
}

Next, create the array by specifying its schema. This example uses a sparse array, but the functionality is similar for dense arrays. Some differences in consolidation exist between sparse and dense arrays, and other sections of Academy cover those differences.

  • Python
  • R
# Create the two dimensions
d1 = tiledb.Dim(name="d1", domain=(0, 3), tile=2, dtype=np.int32)
d2 = tiledb.Dim(name="d2", domain=(0, 3), tile=2, dtype=np.int32)

# Create a domain using the two dimensions
dom = tiledb.Domain(d1, d2)

# Create an attribute
a = tiledb.Attr(name="a", dtype=np.int32)

# Create the array schema with `sparse=True`.
sch = tiledb.ArraySchema(domain=dom, sparse=True, attrs=[a])

# Create the array on disk (it will initially be empty)
tiledb.Array.create(array_uri, sch)
# Create the two dimensions
d1 <- tiledb_dim("d1", c(0L, 3L), 2L, "INT32")
d2 <- tiledb_dim("d2", c(0L, 3L), 2L, "INT32")

# Create a domain using the two dimensions
dom <- tiledb_domain(dims = c(d1, d2))

# Create an attribute
a <- tiledb_attr("a", type = "INT32")

# Create the array schema, setting `sparse = TRUE`
sch <- tiledb_array_schema(dom, a, sparse = TRUE)

# Create the array on disk (it will initially be empty)
arr <- tiledb_array_create(array_uri, sch)

Write some data to the array.

  • Python
  • R
# Prepare some data in numpy arrays
d1_data = np.array([2, 0, 3], dtype=np.int32)
d2_data = np.array([0, 1, 1], dtype=np.int32)
a_data = np.array([4, 1, 6], dtype=np.int32)

# Open the array in write mode and write the data in COO format
with tiledb.open(array_uri, "w") as A:
    A[d1_data, d2_data] = a_data
# Prepare some data in an array
d1_data <- c(2L, 0L, 3L)
d2_data <- c(0L, 1L, 1L)
a_data <- c(4L, 1L, 6L)

# Open the array for writing and write data to the array
arr <- tiledb_array(
  uri = array_uri,
  query_type = "WRITE",
  return_as = "data.frame"
)
arr[d1_data, d2_data] <- a_data

# Close the array
arr <- tiledb_array_close(arr)

Perform a second write, so that two fragments are generated.

  • Python
  • R
# Prepare some data in numpy arrays
d1_data = np.array([2, 0, 1], dtype=np.int32)
d2_data = np.array([2, 3, 3], dtype=np.int32)
a_data = np.array([5, 2, 3], dtype=np.int32)

# Open the array in write mode and write the data in COO format
with tiledb.open(array_uri, "w") as A:
    A[d1_data, d2_data] = a_data
# Prepare some data in an array
d1_data <- c(2L, 0L, 3L)
d2_data <- c(2L, 3L, 3L)
a_data <- c(5L, 2L, 3L)

# Open the array for writing and write data to the array
arr <- tiledb_array_open(
  arr,
  type = "WRITE"
)
arr[d1_data, d2_data] <- a_data

# Close the array
arr <- tiledb_array_close(arr)

The array is a folder in the path specified in array_uri. The contents are explained in other sections of the Academy, but notice the two fragment directories in directory __fragments, and two commit files in the __commits directory. They are all prefixed by _t1_t1 and _t2_t2, where t1 and t2 are the timestamps at which those fragments were created by the two write operations above.

/Users/stavrospapadopoulos/consolidation_fragments
├── __commits
│   ├── __1716136066862_1716136066862_7bb853a857c1dd67b3debbc0a02a5261_21.wrt
│   └── __1716136066872_1716136066872_41e1e8cacca55a47a270b80aefe8a64d_21.wrt
├── __fragment_meta
├── __fragments
│   ├── __1716136066862_1716136066862_7bb853a857c1dd67b3debbc0a02a5261_21
│   │   ├── __fragment_metadata.tdb
│   │   ├── a0.tdb
│   │   ├── d0.tdb
│   │   └── d1.tdb
│   └── __1716136066872_1716136066872_41e1e8cacca55a47a270b80aefe8a64d_21
│       ├── __fragment_metadata.tdb
│       ├── a0.tdb
│       ├── d0.tdb
│       └── d1.tdb
├── __labels
├── __meta
└── __schema
    ├── __1716136066857_1716136066857_0000000224c9b3ccecb4473155b3a7e3
    └── __enumerations

10 directories, 11 files

Read the array data. Observe that the data from both writes are present in the result, as expected.

  • Python
  • R
# Read array
with tiledb.open(array_uri, "r") as A:
    print(A[:])
OrderedDict({'a': array([1, 2, 3, 4, 6, 5], dtype=int32), 'd1': array([0, 0, 1, 2, 3, 2], dtype=int32), 'd2': array([1, 3, 3, 0, 1, 2], dtype=int32)})
# Open the array in read mode
arr <- tiledb_array_open(arr, type = "READ")

# Show the entire array
cat("Entire array:\n")
print(arr[])

arr <- tiledb_array_close(arr)
Entire array:
  d1 d2 a
1  0  1 1
2  2  0 4
3  3  1 6
4  0  3 2
5  2  2 5
6  3  3 3

Now consolidate the array, passing fragments as the value of configuration parameter sm.consolidation.mode (which is also the default).

  • Python
  • R
# Consolidate
config = tiledb.Config({"sm.consolidation.mode": "fragments"})
tiledb.consolidate(array_uri, config=config)
# Consolidate
cfg <- tiledb_config(
  config = c(
    "sm.consolidation.mode" = "fragments"
  )
)

array_consolidate(array_uri, cfg = cfg)

Inspecting the file hierarchy of the array again, observe that TileDB created a new directory inside __fragments, as well as new files inside __commits. Those are now prefixed by _t1_t2. Observe the extra file written in the consolidated fragment, with name t.tdb. This facilitates time traveling on consolidated fragments.

/Users/stavrospapadopoulos/consolidation_fragments
├── __commits
│   ├── __1716136066862_1716136066862_7bb853a857c1dd67b3debbc0a02a5261_21.wrt
│   ├── __1716136066862_1716136066872_038656dde216cde9ea8ce5cec6c738b8_21.vac
│   ├── __1716136066862_1716136066872_038656dde216cde9ea8ce5cec6c738b8_21.wrt
│   └── __1716136066872_1716136066872_41e1e8cacca55a47a270b80aefe8a64d_21.wrt
├── __fragment_meta
├── __fragments
│   ├── __1716136066862_1716136066862_7bb853a857c1dd67b3debbc0a02a5261_21
│   │   ├── __fragment_metadata.tdb
│   │   ├── a0.tdb
│   │   ├── d0.tdb
│   │   └── d1.tdb
│   ├── __1716136066862_1716136066872_038656dde216cde9ea8ce5cec6c738b8_21
│   │   ├── __fragment_metadata.tdb
│   │   ├── a0.tdb
│   │   ├── d0.tdb
│   │   ├── d1.tdb
│   │   └── t.tdb
│   └── __1716136066872_1716136066872_41e1e8cacca55a47a270b80aefe8a64d_21
│       ├── __fragment_metadata.tdb
│       ├── a0.tdb
│       ├── d0.tdb
│       └── d1.tdb
├── __labels
├── __meta
└── __schema
    ├── __1716136066857_1716136066857_0000000224c9b3ccecb4473155b3a7e3
    └── __enumerations

11 directories, 18 files

Read the array again and observe that nothing changed. The same results are present there. Consolidation (in combination with vacuuming), helps significantly boost performance in the presence of multiple write operations. For more details, visit the Performance: Tuning Writes section.

  • Python
  • R
# Read array
with tiledb.open(array_uri, "r") as A:
    print(A[:])
OrderedDict({'a': array([1, 2, 3, 4, 6, 5], dtype=int32), 'd1': array([0, 0, 1, 2, 3, 2], dtype=int32), 'd2': array([1, 3, 3, 0, 1, 2], dtype=int32)})
# Open the array in read mode
arr <- tiledb_array_open(arr, type = "READ")

# Show the entire array
cat("Entire array:\n")
print(arr[])

arr <- tiledb_array_close(arr)
Entire array:
  d1 d2 a
1  0  1 1
2  2  0 4
3  3  1 6
4  0  3 2
5  2  2 5
6  3  3 3

Clean up in the end by deleting the array.

  • Python
  • R
# Delete the array
if os.path.exists(array_uri):
    shutil.rmtree(array_uri)
# Delete the array
if (file.exists(array_uri)) {
  unlink(array_uri, recursive = TRUE)
}
Note

For more advanced configuration for consolidation, visit the Key Concepts: Consolidation section.

Consolidation
Fragment List