1. Structure
  2. Arrays
  3. Foundation
  4. Key Concepts
  5. Storage
  6. Attributes
  • Home
  • What is TileDB?
  • Get Started
  • Explore Content
  • Accounts
    • Individual Accounts
      • Apply for the Free Tier
      • Profile
        • Overview
        • Cloud Credentials
        • Storage Paths
        • REST API Tokens
        • Credits
    • Organization Admins
      • Create an Organization
      • Profile
        • Overview
        • Members
        • Cloud Credentials
        • Storage Paths
        • Billing
      • API Tokens
    • Organization Members
      • Organization Invitations
      • Profile
        • Overview
        • Members
        • Cloud Credentials
        • Storage Paths
        • Billing
      • API Tokens
  • Catalog
    • Introduction
    • Data
      • Arrays
      • Tables
      • Single-Cell (SOMA)
      • Genomics (VCF)
      • Biomedical Imaging
      • Vector Search
      • Files
    • Code
      • Notebooks
      • Dashboards
      • User-Defined Functions
      • Task Graphs
      • ML Models
    • Groups
    • Marketplace
    • Search
  • Collaborate
    • Introduction
    • Organizations
    • Access Control
      • Introduction
      • Share Assets
      • Asset Permissions
      • Public Assets
    • Logging
    • Marketplace
  • Analyze
    • Introduction
    • Slice Data
    • Multi-Region Redirection
    • Notebooks
      • Launch a Notebook
      • Usage
      • Widgets
      • Notebook Image Dependencies
    • Dashboards
      • Dashboards
      • Streamlit
    • Preview
    • User-Defined Functions
    • Task Graphs
    • Serverless SQL
    • Monitor
      • Task Log
      • Task Graph Log
  • Scale
    • Introduction
    • Task Graphs
    • API Usage
  • Structure
    • Why Structure Is Important
    • Arrays
      • Introduction
      • Quickstart
      • Foundation
        • Array Data Model
        • Key Concepts
          • Storage
            • Arrays
            • Dimensions
            • Attributes
            • Cells
            • Domain
            • Tiles
            • Data Layout
            • Compression
            • Encryption
            • Tile Filters
            • Array Schema
            • Schema Evolution
            • Fragments
            • Fragment Metadata
            • Commits
            • Indexing
            • Array Metadata
            • Datetimes
            • Groups
            • Object Stores
          • Compute
            • Writes
            • Deletions
            • Consolidation
            • Vacuuming
            • Time Traveling
            • Reads
            • Query Conditions
            • Aggregates
            • User-Defined Functions
            • Distributed Compute
            • Concurrency
            • Parallelism
        • Storage Format Spec
      • Tutorials
        • Basics
          • Basic Dense Array
          • Basic Sparse Array
          • Array Metadata
          • Compression
          • Encryption
          • Data Layout
          • Tile Filters
          • Datetimes
          • Multiple Attributes
          • Variable-Length Attributes
          • String Dimensions
          • Nullable Attributes
          • Multi-Range Reads
          • Query Conditions
          • Aggregates
          • Deletions
          • Catching Errors
          • Configuration
          • Basic S3 Example
          • Basic TileDB Cloud
          • fromDataFrame
          • Palmer Penguins
        • Advanced
          • Schema Evolution
          • Advanced Writes
            • Write at a Timestamp
            • Get Fragment Info
            • Consolidation
              • Fragments
              • Fragment List
              • Consolidation Plan
              • Commits
              • Fragment Metadata
              • Array Metadata
            • Vacuuming
              • Fragments
              • Commits
              • Fragment Metadata
              • Array Metadata
          • Advanced Reads
            • Get Fragment Info
            • Time Traveling
              • Introduction
              • Fragments
              • Array Metadata
              • Schema Evolution
          • Array Upgrade
          • Backends
            • Amazon S3
            • Azure Blob Storage
            • Google Cloud Storage
            • MinIO
            • Lustre
          • Virtual Filesystem
          • User-Defined Functions
          • Distributed Compute
          • Result Estimation
          • Incomplete Queries
        • Management
          • Array Schema
          • Groups
          • Object Management
        • Performance
          • Summary of Factors
          • Dense vs. Sparse
          • Dimensions vs. Attributes
          • Compression
          • Tiling and Data Layout
          • Tuning Writes
          • Tuning Reads
      • API Reference
    • Tables
      • Introduction
      • Quickstart
      • Foundation
        • Data Model
        • Key Concepts
          • Indexes
          • Columnar Storage
          • Compression
          • Data Manipulation
          • Optimize Tables
          • ACID
          • Serverless SQL
          • SQL Connectors
          • Dataframes
          • CSV Ingestion
      • Tutorials
        • Basics
          • Ingestion with SQL
          • CSV Ingestion
          • Basic S3 Example
          • Running Locally
        • Advanced
          • Scalable Ingestion
          • Scalable Queries
      • API Reference
    • AI & ML
      • Vector Search
        • Introduction
        • Quickstart
        • Foundation
          • Data Model
          • Key Concepts
            • Vector Search
            • Vector Databases
            • Algorithms
            • Distance Metrics
            • Updates
            • Deployment Methods
            • Architecture
            • Distributed Compute
          • Storage Format Spec
        • Tutorials
          • Basics
            • Ingestion & Querying
            • Updates
            • Deletions
            • Basic S3 Example
            • Running Locally
          • Advanced
            • Versioning
            • Time Traveling
            • Consolidation
            • Distributed Compute
            • RAG LLM
            • LLM Memory
            • File Search
            • Image Search
            • Protein Search
          • Performance
        • API Reference
      • ML Models
        • Introduction
        • Quickstart
        • Foundation
          • Basics
          • Storage
          • Cloud Execution
          • Why TileDB for Machine Learning
        • Tutorials
          • Ingestion
            • Data Ingestion
              • Dense Datasets
              • Sparse Datasets
            • ML Model Ingestion
          • Management
            • Array Schema
            • Machine Learning: Groups
            • Time Traveling
    • Life Sciences
      • Single-cell
        • Introduction
        • Quickstart
        • Foundation
          • Data Model
          • Key Concepts
            • Data Structures
            • Use of Apache Arrow
            • Join IDs
            • State Management
            • TileDB Cloud URIs
          • SOMA API Specification
        • Tutorials
          • Data Ingestion
          • Bulk Ingestion Tutorial
          • Data Access
          • Distributed Compute
          • Basic S3 Example
          • Multi-Experiment Queries
          • Appending Data to a SOMA Experiment
          • Add New Measurements
          • SQL Queries
          • Running Locally
          • Shapes in TileDB-SOMA
          • Drug Discovery App
        • Spatial
          • Introduction
          • Foundation
            • Spatial Data Model
            • Data Structures
          • Tutorials
            • Spatial Data Ingestion
            • Access Spatial Data
            • Manage Coordinate Spaces
        • API Reference
      • Population Genomics
        • Introduction
        • Quickstart
        • Foundation
          • Data Model
          • Key Concepts
            • The N+1 Problem
            • Architecture
            • Arrays
            • Ingestion
            • Reads
            • Variant Statistics
            • Annotations
            • User-Defined Functions
            • Tables and SQL
            • Distributed Compute
          • Storage Format Spec
        • Tutorials
          • Basics
            • Basic Ingestion
            • Basic Queries
            • Export to VCF
            • Add New Samples
            • Deleting Samples
            • Basic S3 Example
            • Basic TileDB Cloud
          • Advanced
            • Scalable Ingestion
            • Scalable Queries
            • Query Transforms
            • Handling Large Queries
            • Annotations
              • Finding Annotations
              • Embedded Annotations
              • External Annotations
              • Annotation VCFs
              • Ingesting Annotations
            • Variant Statistics
            • Tables and SQL
            • User-Defined Functions
            • Sample Metadata
            • Split VCF
          • Performance
        • API Reference
          • Command Line Interface
          • Python API
          • Cloud API
      • Biomedical Imaging
        • Introduction
        • Foundation
          • Data Model
          • Key Concepts
            • Arrays
            • Ingestion
            • Reads
            • User Defined Functions
          • Storage Format Spec
        • Quickstart
        • Tutorials
          • Basics
            • Ingestion
            • Read
              • OpenSlide
              • TileDB-Py
          • Advanced
            • Batched Ingestion
            • Chunked Ingestion
            • Machine Learning
              • PyTorch
            • Napari
    • Files
  • API Reference
  • Self-Hosting
    • Installation
    • Upgrades
    • Administrative Tasks
    • Image Customization
      • Customize User-Defined Function Images
      • AWS ECR Container Registry
      • Customize Jupyter Notebook Images
    • Single Sign-On
      • Configure Single Sign-On
      • OpenID Connect
      • Okta SCIM
      • Microsoft Entra
  • Glossary

On this page

  • Columnar format
  • Fixed-length attributes
  • Variable-length attributes
  • Supported attribute data types
  1. Structure
  2. Arrays
  3. Foundation
  4. Key Concepts
  5. Storage
  6. Attributes

Attributes

arrays
foundation
attributes
Attributes define the values TileDB stores inside the multi-dimensional cells.

Dimensions define the hyperspace of the array, in which cells are stored and efficiently retrieved. You can think of dimensions as the fields of a dataset that receive the majority of the query conditions, since TileDB is designed to perform range searches on these dimensions very fast. Dimensions differ from attributes, which define the values that TileDB stores inside the multi-dimensional cells. Visit the Performance: Dimensions vs. Attributes section for information about how to choose the dimensions and attributes when creating an array for your dataset.

The array data model (dense and sparse) The array data model (dense and sparse)

Visit the Array Data Model section for more details.

Columnar format

An array may have multiple attributes, which means that every (non-empty) cell can store multiple values, potentially of different types. TileDB stores the values of each attribute across all cells in separate files (i.e., it follows the so-called columnar format). This is beneficial for several reasons, two of which are:

  • Each file contains values of the same type, potentially very similar to each other, which leads to more effective compression.
  • Queries that subselect over attributes do not need to fetch values of irrelevant attributes from storage at all. This significantly boosts performance.

Fixed-length attributes

A cell along a fixed-length attribute either takes a single value of a defined basic data type (e.g., int32), or it can take a fixed, prespecified (upon array creation) number of values of the same defined basic data type (e.g., 3 int32 values, such as 1,2,3). In both cases, each cell value along the a fixed-length attribute consume the same size in bytes.

Variable-length attributes

In addition, TileDB supports variable-length attributes, such as strings and lists of basic data type values of different size for each cell. TileDB stores two files for each variable-length attribute. One serializes all the values of the non-empty cells on this attribute (visit the Key Concepts: Data Layout section for more detail on how TileDB stores multi-dimensional values serially on storage), and one stores the starting offsets (in bytes) of each cell value in the first file. For example, if an ASCII string attribute stores values "a", "bb", "ccc", then the first file contains abbccc, whereas the second file contains offsets (in bytes) 0, 1, 3. With this information, TileDB can easily locate the second attribute value in the first file using the second offset (1) in the offsets file. Visit the Key Concepts: Data Layout and Storage Format Spec sections for a detailed description of the data stored in each attribute data and offset file in TileDB.

Supported attribute data types

The following table summarizes the supported attribute data types for dense and sparse arrays.

  • C/C++/Java/Go
  • C#
  • Python
  • R
Datatype Description Array type
TILEDB_BLOB Opaque bytes. Does not support query conditions. Dense & Sparse
TILEDB_STRING_ASCII ASCII string Dense & Sparse
TILEDB_STRING_UTF8 UTF-8 string Dense & Sparse
TILEDB_STRING_UTF16 UTF-16 string Dense & Sparse
TILEDB_STRING_UTF32 UTF-32 string Dense & Sparse
TILEDB_INT8 8-bit integer Dense & Sparse
TILEDB_UINT8 8-bit unsigned integer Dense & Sparse
TILEDB_INT16 16-bit integer Dense & Sparse
TILEDB_UINT16 16-bit unsigned integer Dense & Sparse
TILEDB_INT32 32-bit integer Dense & Sparse
TILEDB_UINT32 32-bit unsigned integer Dense & Sparse
TILEDB_INT64 64-bit integer Dense & Sparse
TILEDB_UINT64 64-bit unsigned integer Dense & Sparse
TILEDB_FLOAT32 32-bit floating point Dense & Sparse
TILEDB_FLOAT64 64-bit floating point Dense & Sparse
TILEDB_DATETIME_YEAR Years Dense & Sparse
TILEDB_DATETIME_MONTH Months Dense & Sparse
TILEDB_DATETIME_WEEK Weeks Dense & Sparse
TILEDB_DATETIME_DAY Days Dense & Sparse
TILEDB_DATETIME_HR Hours Dense & Sparse
TILEDB_DATETIME_MIN Minutes Dense & Sparse
TILEDB_DATETIME_SEC Seconds Dense & Sparse
TILEDB_DATETIME_MS Milliseconds Dense & Sparse
TILEDB_DATETIME_US Microseconds Dense & Sparse
TILEDB_DATETIME_NS Nanoseconds Dense & Sparse
TILEDB_DATETIME_PS Picoseconds Dense & Sparse
TILEDB_DATETIME_FS Femtoseconds Dense & Sparse
TILEDB_DATETIME_AS Attoseconds Dense & Sparse
Datatype Description Array type
Datatype.Blob Opaque bytes. Does not support query conditions. Dense & Sparse
Datatype.StringAscii Variable length string Dense & Sparse
Datatype.StringUtf8 UTF-8 string Dense & Sparse
Datatype.StringUtf16 UTF-16 string Dense & Sparse
Datatype.StringUtf32 UTF-32 string Dense & Sparse
Datatype.Int8 8-bit integer Dense & Sparse
Datatype.UInt8 8-bit unsigned integer Dense & Sparse
Datatype.Int16 16-bit integer Dense & Sparse
Datatype.UInt16 16-bit unsigned integer Dense & Sparse
Datatype.Int32 32-bit integer Dense & Sparse
Datatype.UInt32 32-bit unsigned integer Dense & Sparse
Datatype.Int64 64-bit integer Dense & Sparse
Datatype.UInt64 64-bit unsigned integer Dense & Sparse
Datatype.Float32 32-bit floating point Dense & Sparse
Datatype.Float64 64-bit floating point Dense & Sparse
DataType.DateTimeYear Years Dense & Sparse
DataType.DateTimeMonth Months Dense & Sparse
DataType.DateTimeWeek Weeks Dense & Sparse
DataType.DateTimeDay Days Dense & Sparse
DataType.DateTimeHour Hours Dense & Sparse
DataType.DateTimeMinute Minutes Dense & Sparse
DataType.DateTimeSecond Seconds Dense & Sparse
DataType.DateTimeMillisecond Milliseconds Dense & Sparse
DataType.DateTimeMicrosecond Microseconds Dense & Sparse
DataType.DateTimeNanosecond Nanoseconds Dense & Sparse
DataType.DateTimePicosecond Picoseconds Dense & Sparse
DataType.DateTimeFemtosecond Femtoseconds Dense & Sparse
DataType.DateTimeAttosecond Attoseconds Dense & Sparse
Datatype Description Array type
"ascii" Variable length string Dense & Sparse
np.dtype('U') UTF-8 string Dense & Sparse
np.int8 8-bit integer Dense & Sparse
np.uint8 8-bit unsigned integer Dense & Sparse
np.int16 16-bit integer Dense & Sparse
np.uint16 16-bit unsigned integer Dense & Sparse
np.int32 32-bit integer Dense & Sparse
np.uint32 32-bit unsigned integer Dense & Sparse
np.int64 64-bit integer Dense & Sparse
np.uint64 64-bit unsigned integer Dense & Sparse
np.float32 32-bit floating point Dense & Sparse
np.float64 64-bit floating point Dense & Sparse
"datetime64[Y]" Years Dense & Sparse
"datetime64[M]" Months Dense & Sparse
"datetime64[W]" Weeks Dense & Sparse
"datetime64[D]" Days Dense & Sparse
"datetime64[h]" Hours Dense & Sparse
"datetime64[m]" Minutes Dense & Sparse
"datetime64[s]" Seconds Dense & Sparse
"datetime64[ms]" Milliseconds Dense & Sparse
"datetime64[us]" Microseconds Dense & Sparse
"datetime64[ns]" Nanoseconds Dense & Sparse
"datetime64[ps]" Picoseconds Dense & Sparse
"datetime64[fs]" Femtoseconds Dense & Sparse
"datetime64[as]" Attoseconds Dense & Sparse
Datatype Description Array type
raw Opaque bytes. Does not support query conditions. Dense & Sparse
"ASCII" Variable length string Dense & Sparse
character UTF-8 string Dense & Sparse
"INT8" 8-bit integer Dense & Sparse
"UINT8" 8-bit unsigned integer Dense & Sparse
"INT16" 16-bit integer Dense & Sparse
"UINT16" 16-bit unsigned integer Dense & Sparse
"INT32" 32-bit integer Dense & Sparse
"UINT32" 32-bit unsigned integer Dense & Sparse
"INT64" 64-bit integer Dense & Sparse
"UINT64" 64-bit unsigned integer Dense & Sparse
"FLOAT32" 32-bit floating point Dense & Sparse
"FLOAT64" 64-bit floating point Dense & Sparse
"DATETIME_YEAR" Years Dense & Sparse
"DATETIME_MONTH" Months Dense & Sparse
"DATETIME_WEEK" Weeks Dense & Sparse
"DATETIME_DAY" Days Dense & Sparse
"DATETIME_HR" Hours Dense & Sparse
"DATETIME_MIN" Minutes Dense & Sparse
"DATETIME_SEC" Seconds Dense & Sparse
"DATETIME_MS" Milliseconds Dense & Sparse
"DATETIME_US" Microseconds Dense & Sparse
"DATETIME_NS" Nanoseconds Dense & Sparse
"DATETIME_PS" Picoseconds Dense & Sparse
"DATETIME_FS" Femtoseconds Dense & Sparse
"DATETIME_AS" Attoseconds Dense & Sparse
Dimensions
Cells