1. Structure
  2. Life Sciences
  3. Population Genomics
  4. Tutorials
  5. Basics
  6. Add New Samples
  • Home
  • What is TileDB?
  • Get Started
  • Explore Content
  • Accounts
    • Individual Accounts
      • Apply for the Free Tier
      • Profile
        • Overview
        • Cloud Credentials
        • Storage Paths
        • REST API Tokens
        • Credits
    • Organization Admins
      • Create an Organization
      • Profile
        • Overview
        • Members
        • Cloud Credentials
        • Storage Paths
        • Billing
      • API Tokens
    • Organization Members
      • Organization Invitations
      • Profile
        • Overview
        • Members
        • Cloud Credentials
        • Storage Paths
        • Billing
      • API Tokens
  • Catalog
    • Introduction
    • Data
      • Arrays
      • Tables
      • Single-Cell (SOMA)
      • Genomics (VCF)
      • Biomedical Imaging
      • Vector Search
      • Files
    • Code
      • Notebooks
      • Dashboards
      • User-Defined Functions
      • Task Graphs
      • ML Models
    • Groups
    • Marketplace
    • Search
  • Collaborate
    • Introduction
    • Organizations
    • Access Control
      • Introduction
      • Share Assets
      • Asset Permissions
      • Public Assets
    • Logging
    • Marketplace
  • Analyze
    • Introduction
    • Slice Data
    • Multi-Region Redirection
    • Notebooks
      • Launch a Notebook
      • Usage
      • Widgets
      • Notebook Image Dependencies
    • Dashboards
      • Dashboards
      • Streamlit
    • Preview
    • User-Defined Functions
    • Task Graphs
    • Serverless SQL
    • Monitor
      • Task Log
      • Task Graph Log
  • Scale
    • Introduction
    • Task Graphs
    • API Usage
  • Structure
    • Why Structure Is Important
    • Arrays
      • Introduction
      • Quickstart
      • Foundation
        • Array Data Model
        • Key Concepts
          • Storage
            • Arrays
            • Dimensions
            • Attributes
            • Cells
            • Domain
            • Tiles
            • Data Layout
            • Compression
            • Encryption
            • Tile Filters
            • Array Schema
            • Schema Evolution
            • Fragments
            • Fragment Metadata
            • Commits
            • Indexing
            • Array Metadata
            • Datetimes
            • Groups
            • Object Stores
          • Compute
            • Writes
            • Deletions
            • Consolidation
            • Vacuuming
            • Time Traveling
            • Reads
            • Query Conditions
            • Aggregates
            • User-Defined Functions
            • Distributed Compute
            • Concurrency
            • Parallelism
        • Storage Format Spec
      • Tutorials
        • Basics
          • Basic Dense Array
          • Basic Sparse Array
          • Array Metadata
          • Compression
          • Encryption
          • Data Layout
          • Tile Filters
          • Datetimes
          • Multiple Attributes
          • Variable-Length Attributes
          • String Dimensions
          • Nullable Attributes
          • Multi-Range Reads
          • Query Conditions
          • Aggregates
          • Deletions
          • Catching Errors
          • Configuration
          • Basic S3 Example
          • Basic TileDB Cloud
          • fromDataFrame
          • Palmer Penguins
        • Advanced
          • Schema Evolution
          • Advanced Writes
            • Write at a Timestamp
            • Get Fragment Info
            • Consolidation
              • Fragments
              • Fragment List
              • Consolidation Plan
              • Commits
              • Fragment Metadata
              • Array Metadata
            • Vacuuming
              • Fragments
              • Commits
              • Fragment Metadata
              • Array Metadata
          • Advanced Reads
            • Get Fragment Info
            • Time Traveling
              • Introduction
              • Fragments
              • Array Metadata
              • Schema Evolution
          • Array Upgrade
          • Backends
            • Amazon S3
            • Azure Blob Storage
            • Google Cloud Storage
            • MinIO
            • Lustre
          • Virtual Filesystem
          • User-Defined Functions
          • Distributed Compute
          • Result Estimation
          • Incomplete Queries
        • Management
          • Array Schema
          • Groups
          • Object Management
        • Performance
          • Summary of Factors
          • Dense vs. Sparse
          • Dimensions vs. Attributes
          • Compression
          • Tiling and Data Layout
          • Tuning Writes
          • Tuning Reads
      • API Reference
    • Tables
      • Introduction
      • Quickstart
      • Foundation
        • Data Model
        • Key Concepts
          • Indexes
          • Columnar Storage
          • Compression
          • Data Manipulation
          • Optimize Tables
          • ACID
          • Serverless SQL
          • SQL Connectors
          • Dataframes
          • CSV Ingestion
      • Tutorials
        • Basics
          • Ingestion with SQL
          • CSV Ingestion
          • Basic S3 Example
          • Running Locally
        • Advanced
          • Scalable Ingestion
          • Scalable Queries
      • API Reference
    • AI & ML
      • Vector Search
        • Introduction
        • Quickstart
        • Foundation
          • Data Model
          • Key Concepts
            • Vector Search
            • Vector Databases
            • Algorithms
            • Distance Metrics
            • Updates
            • Deployment Methods
            • Architecture
            • Distributed Compute
          • Storage Format Spec
        • Tutorials
          • Basics
            • Ingestion & Querying
            • Updates
            • Deletions
            • Basic S3 Example
            • Running Locally
          • Advanced
            • Versioning
            • Time Traveling
            • Consolidation
            • Distributed Compute
            • RAG LLM
            • LLM Memory
            • File Search
            • Image Search
            • Protein Search
          • Performance
        • API Reference
      • ML Models
        • Introduction
        • Quickstart
        • Foundation
          • Basics
          • Storage
          • Cloud Execution
          • Why TileDB for Machine Learning
        • Tutorials
          • Ingestion
            • Data Ingestion
              • Dense Datasets
              • Sparse Datasets
            • ML Model Ingestion
          • Management
            • Array Schema
            • Machine Learning: Groups
            • Time Traveling
    • Life Sciences
      • Single-cell
        • Introduction
        • Quickstart
        • Foundation
          • Data Model
          • Key Concepts
            • Data Structures
            • Use of Apache Arrow
            • Join IDs
            • State Management
            • TileDB Cloud URIs
          • SOMA API Specification
        • Tutorials
          • Data Ingestion
          • Bulk Ingestion Tutorial
          • Data Access
          • Distributed Compute
          • Basic S3 Example
          • Multi-Experiment Queries
          • Appending Data to a SOMA Experiment
          • Add New Measurements
          • SQL Queries
          • Running Locally
          • Shapes in TileDB-SOMA
          • Drug Discovery App
        • Spatial
          • Introduction
          • Foundation
            • Spatial Data Model
            • Data Structures
          • Tutorials
            • Spatial Data Ingestion
            • Access Spatial Data
            • Manage Coordinate Spaces
        • API Reference
      • Population Genomics
        • Introduction
        • Quickstart
        • Foundation
          • Data Model
          • Key Concepts
            • The N+1 Problem
            • Architecture
            • Arrays
            • Ingestion
            • Reads
            • Variant Statistics
            • Annotations
            • User-Defined Functions
            • Tables and SQL
            • Distributed Compute
          • Storage Format Spec
        • Tutorials
          • Basics
            • Basic Ingestion
            • Basic Queries
            • Export to VCF
            • Add New Samples
            • Deleting Samples
            • Basic S3 Example
            • Basic TileDB Cloud
          • Advanced
            • Scalable Ingestion
            • Scalable Queries
            • Query Transforms
            • Handling Large Queries
            • Annotations
              • Finding Annotations
              • Embedded Annotations
              • External Annotations
              • Annotation VCFs
              • Ingesting Annotations
            • Variant Statistics
            • Tables and SQL
            • User-Defined Functions
            • Sample Metadata
            • Split VCF
          • Performance
        • API Reference
          • Command Line Interface
          • Python API
          • Cloud API
      • Biomedical Imaging
        • Introduction
        • Foundation
          • Data Model
          • Key Concepts
            • Arrays
            • Ingestion
            • Reads
            • User Defined Functions
          • Storage Format Spec
        • Quickstart
        • Tutorials
          • Basics
            • Ingestion
            • Read
              • OpenSlide
              • TileDB-Py
          • Advanced
            • Batched Ingestion
            • Chunked Ingestion
            • Machine Learning
              • PyTorch
            • Napari
    • Files
  • API Reference
  • Self-Hosting
    • Installation
    • Upgrades
    • Administrative Tasks
    • Image Customization
      • Customize User-Defined Function Images
      • AWS ECR Container Registry
      • Customize Jupyter Notebook Images
    • Single Sign-On
      • Configure Single Sign-On
      • OpenID Connect
      • Okta SCIM
      • Microsoft Entra
  • Glossary

On this page

  • Setup
  • Initial ingestion
  • Add new samples
  • Clean up
  1. Structure
  2. Life Sciences
  3. Population Genomics
  4. Tutorials
  5. Basics
  6. Add New Samples

Add New Samples

life sciences
genomics (vcf)
tutorials
writes
updates
Learn how to add new samples to a TileDB-VCF dataset, solving the N+1 problem.
How to run this tutorial

You can run this tutorial in two ways:

  1. Locally on your machine.
  2. On TileDB Cloud.

However, since TileDB Cloud has a free tier, we strongly recommend that you sign up and run everything there, as that requires no installations or deployment.

This tutorial shows how you can efficiently add new samples to an existing TileDB-VCF dataset. To find more details on why it is possible for TileDB-VCF to rapidly add new samples, visit the Key Concepts: N+1 Problem section.

Setup

First, import the necessary libraries, set the TileDB-VCF dataset URI (i.e., its path, which in this tutorial will be on local storage), and delete any previously created datasets with the same name.

  • Python
import os.path
import shutil

import tiledb
import tiledbvcf

# Print library versions
print("TileDB core version: {}".format(tiledb.libtiledb.version()))
print("TileDB-Py version: {}".format(tiledb.version()))
print("TileDB-VCF version: {}".format(tiledbvcf.version))

# Set VCF dataset URI
vcf_uri = os.path.expanduser("~/adding_new_samples")

# Clean up VCF dataset if it already exists
if os.path.exists(vcf_uri):
    shutil.rmtree(vcf_uri)
TileDB core version: (2, 24, 2)
TileDB-Py version: (0, 30, 2)
TileDB-VCF version: 0.33.2

Initial ingestion

Specify the samples to be ingested, which are readily available on a TileDB-owned public S3 bucket.

  • Python
vcf_bucket = "s3://tiledb-inc-demo-data/examples/notebooks/vcfs/1kg-dragen"
samples_to_ingest = [
    "HG00096_chr21.gvcf.gz",
    "HG00097_chr21.gvcf.gz",
    "HG00099_chr21.gvcf.gz",
    "HG00100_chr21.gvcf.gz",
    "HG00101_chr21.gvcf.gz",
]
sample_uris = [f"{vcf_bucket}/{s}" for s in samples_to_ingest]
sample_uris
['s3://tiledb-inc-demo-data/examples/notebooks/vcfs/1kg-dragen/HG00096_chr21.gvcf.gz',
 's3://tiledb-inc-demo-data/examples/notebooks/vcfs/1kg-dragen/HG00097_chr21.gvcf.gz',
 's3://tiledb-inc-demo-data/examples/notebooks/vcfs/1kg-dragen/HG00099_chr21.gvcf.gz',
 's3://tiledb-inc-demo-data/examples/notebooks/vcfs/1kg-dragen/HG00100_chr21.gvcf.gz',
 's3://tiledb-inc-demo-data/examples/notebooks/vcfs/1kg-dragen/HG00101_chr21.gvcf.gz']

Next, create a TileDB-VCF dataset, and ingest the samples in it.

  • Python
# Open a VCF dataset in write mode
ds = tiledbvcf.Dataset(uri=vcf_uri, mode="w")

# Create empty VCF dataset
ds.create_dataset()

# Ingest samples
ds.ingest_samples(sample_uris=sample_uris)

Show which samples were ingested.

  • Python
# Open the Dataset in read mode
ds = tiledbvcf.Dataset(uri=vcf_uri, mode="r")

# Show which samples were ingested
ds.samples()
['HG00096', 'HG00097', 'HG00099', 'HG00100', 'HG00101']

Add new samples

Adding new samples to an existing TileDB-VCF dataset is almost identical to the initial ingestion. You just need to open the dataset in write mode and ingest the specified samples.

First, specify some new samples to ingest:

  • Python
samples_to_add = [
    "HG00102_chr21.gvcf.gz",
    "HG00103_chr21.gvcf.gz",
    "HG00105_chr21.gvcf.gz",
    "HG00106_chr21.gvcf.gz",
    "HG00107_chr21.gvcf.gz",
]
new_sample_uris = [f"{vcf_bucket}/{s}" for s in samples_to_add]
new_sample_uris
['s3://tiledb-inc-demo-data/examples/notebooks/vcfs/1kg-dragen/HG00102_chr21.gvcf.gz',
 's3://tiledb-inc-demo-data/examples/notebooks/vcfs/1kg-dragen/HG00103_chr21.gvcf.gz',
 's3://tiledb-inc-demo-data/examples/notebooks/vcfs/1kg-dragen/HG00105_chr21.gvcf.gz',
 's3://tiledb-inc-demo-data/examples/notebooks/vcfs/1kg-dragen/HG00106_chr21.gvcf.gz',
 's3://tiledb-inc-demo-data/examples/notebooks/vcfs/1kg-dragen/HG00107_chr21.gvcf.gz']

Next, open the TileDB-VCF dataset, and ingest the new samples.

  • Python
# Open a VCF dataset in write mode
ds = tiledbvcf.Dataset(uri=vcf_uri, mode="w")

# Ingest samples
ds.ingest_samples(sample_uris=new_sample_uris)

Check the samples that exist in the TileDB-VCF dataset after the new samples are ingested.

  • Python
# Open the Dataset in read mode
ds = tiledbvcf.Dataset(uri=vcf_uri, mode="r")

# Show which samples were ingested
ds.samples()
['HG00096',
 'HG00097',
 'HG00099',
 'HG00100',
 'HG00101',
 'HG00102',
 'HG00103',
 'HG00105',
 'HG00106',
 'HG00107']

Clean up

Clean up the created TileDB-VCF dataset.

  • Python
# Clean up VCF dataset if it already exists
if os.path.exists(vcf_uri):
    shutil.rmtree(vcf_uri)
Export to VCF
Deleting Samples