1. Structure
  2. Arrays
  3. Tutorials
  4. Advanced
  5. Advanced Reads
  6. Time Traveling
  7. Schema Evolution
  • Home
  • What is TileDB?
  • Get Started
  • Explore Content
  • Accounts
    • Individual Accounts
      • Apply for the Free Tier
      • Profile
        • Overview
        • Cloud Credentials
        • Storage Paths
        • REST API Tokens
        • Credits
    • Organization Admins
      • Create an Organization
      • Profile
        • Overview
        • Members
        • Cloud Credentials
        • Storage Paths
        • Billing
      • API Tokens
    • Organization Members
      • Organization Invitations
      • Profile
        • Overview
        • Members
        • Cloud Credentials
        • Storage Paths
        • Billing
      • API Tokens
  • Catalog
    • Introduction
    • Data
      • Arrays
      • Tables
      • Single-Cell (SOMA)
      • Genomics (VCF)
      • Biomedical Imaging
      • Vector Search
      • Files
    • Code
      • Notebooks
      • Dashboards
      • User-Defined Functions
      • Task Graphs
      • ML Models
    • Groups
    • Marketplace
    • Search
  • Collaborate
    • Introduction
    • Organizations
    • Access Control
      • Introduction
      • Share Assets
      • Asset Permissions
      • Public Assets
    • Logging
    • Marketplace
  • Analyze
    • Introduction
    • Slice Data
    • Multi-Region Redirection
    • Notebooks
      • Launch a Notebook
      • Usage
      • Widgets
      • Notebook Image Dependencies
    • Dashboards
      • Dashboards
      • Streamlit
    • Preview
    • User-Defined Functions
    • Task Graphs
    • Serverless SQL
    • Monitor
      • Task Log
      • Task Graph Log
  • Scale
    • Introduction
    • Task Graphs
    • API Usage
  • Structure
    • Why Structure Is Important
    • Arrays
      • Introduction
      • Quickstart
      • Foundation
        • Array Data Model
        • Key Concepts
          • Storage
            • Arrays
            • Dimensions
            • Attributes
            • Cells
            • Domain
            • Tiles
            • Data Layout
            • Compression
            • Encryption
            • Tile Filters
            • Array Schema
            • Schema Evolution
            • Fragments
            • Fragment Metadata
            • Commits
            • Indexing
            • Array Metadata
            • Datetimes
            • Groups
            • Object Stores
          • Compute
            • Writes
            • Deletions
            • Consolidation
            • Vacuuming
            • Time Traveling
            • Reads
            • Query Conditions
            • Aggregates
            • User-Defined Functions
            • Distributed Compute
            • Concurrency
            • Parallelism
        • Storage Format Spec
      • Tutorials
        • Basics
          • Basic Dense Array
          • Basic Sparse Array
          • Array Metadata
          • Compression
          • Encryption
          • Data Layout
          • Tile Filters
          • Datetimes
          • Multiple Attributes
          • Variable-Length Attributes
          • String Dimensions
          • Nullable Attributes
          • Multi-Range Reads
          • Query Conditions
          • Aggregates
          • Deletions
          • Catching Errors
          • Configuration
          • Basic S3 Example
          • Basic TileDB Cloud
          • fromDataFrame
          • Palmer Penguins
        • Advanced
          • Schema Evolution
          • Advanced Writes
            • Write at a Timestamp
            • Get Fragment Info
            • Consolidation
              • Fragments
              • Fragment List
              • Consolidation Plan
              • Commits
              • Fragment Metadata
              • Array Metadata
            • Vacuuming
              • Fragments
              • Commits
              • Fragment Metadata
              • Array Metadata
          • Advanced Reads
            • Get Fragment Info
            • Time Traveling
              • Introduction
              • Fragments
              • Array Metadata
              • Schema Evolution
          • Array Upgrade
          • Backends
            • Amazon S3
            • Azure Blob Storage
            • Google Cloud Storage
            • MinIO
            • Lustre
          • Virtual Filesystem
          • User-Defined Functions
          • Distributed Compute
          • Result Estimation
          • Incomplete Queries
        • Management
          • Array Schema
          • Groups
          • Object Management
        • Performance
          • Summary of Factors
          • Dense vs. Sparse
          • Dimensions vs. Attributes
          • Compression
          • Tiling and Data Layout
          • Tuning Writes
          • Tuning Reads
      • API Reference
    • Tables
      • Introduction
      • Quickstart
      • Foundation
        • Data Model
        • Key Concepts
          • Indexes
          • Columnar Storage
          • Compression
          • Data Manipulation
          • Optimize Tables
          • ACID
          • Serverless SQL
          • SQL Connectors
          • Dataframes
          • CSV Ingestion
      • Tutorials
        • Basics
          • Ingestion with SQL
          • CSV Ingestion
          • Basic S3 Example
          • Running Locally
        • Advanced
          • Scalable Ingestion
          • Scalable Queries
      • API Reference
    • AI & ML
      • Vector Search
        • Introduction
        • Quickstart
        • Foundation
          • Data Model
          • Key Concepts
            • Vector Search
            • Vector Databases
            • Algorithms
            • Distance Metrics
            • Updates
            • Deployment Methods
            • Architecture
            • Distributed Compute
          • Storage Format Spec
        • Tutorials
          • Basics
            • Ingestion & Querying
            • Updates
            • Deletions
            • Basic S3 Example
            • Running Locally
          • Advanced
            • Versioning
            • Time Traveling
            • Consolidation
            • Distributed Compute
            • RAG LLM
            • LLM Memory
            • File Search
            • Image Search
            • Protein Search
          • Performance
        • API Reference
      • ML Models
        • Introduction
        • Quickstart
        • Foundation
          • Basics
          • Storage
          • Cloud Execution
          • Why TileDB for Machine Learning
        • Tutorials
          • Ingestion
            • Data Ingestion
              • Dense Datasets
              • Sparse Datasets
            • ML Model Ingestion
          • Management
            • Array Schema
            • Machine Learning: Groups
            • Time Traveling
    • Life Sciences
      • Single-cell
        • Introduction
        • Quickstart
        • Foundation
          • Data Model
          • Key Concepts
            • Data Structures
            • Use of Apache Arrow
            • Join IDs
            • State Management
            • TileDB Cloud URIs
          • SOMA API Specification
        • Tutorials
          • Data Ingestion
          • Bulk Ingestion Tutorial
          • Data Access
          • Distributed Compute
          • Basic S3 Example
          • Multi-Experiment Queries
          • Appending Data to a SOMA Experiment
          • Add New Measurements
          • SQL Queries
          • Running Locally
          • Shapes in TileDB-SOMA
          • Drug Discovery App
        • Spatial
          • Introduction
          • Foundation
            • Spatial Data Model
            • Data Structures
          • Tutorials
            • Spatial Data Ingestion
            • Access Spatial Data
            • Manage Coordinate Spaces
        • API Reference
      • Population Genomics
        • Introduction
        • Quickstart
        • Foundation
          • Data Model
          • Key Concepts
            • The N+1 Problem
            • Architecture
            • Arrays
            • Ingestion
            • Reads
            • Variant Statistics
            • Annotations
            • User-Defined Functions
            • Tables and SQL
            • Distributed Compute
          • Storage Format Spec
        • Tutorials
          • Basics
            • Basic Ingestion
            • Basic Queries
            • Export to VCF
            • Add New Samples
            • Deleting Samples
            • Basic S3 Example
            • Basic TileDB Cloud
          • Advanced
            • Scalable Ingestion
            • Scalable Queries
            • Query Transforms
            • Handling Large Queries
            • Annotations
              • Finding Annotations
              • Embedded Annotations
              • External Annotations
              • Annotation VCFs
              • Ingesting Annotations
            • Variant Statistics
            • Tables and SQL
            • User-Defined Functions
            • Sample Metadata
            • Split VCF
          • Performance
        • API Reference
          • Command Line Interface
          • Python API
          • Cloud API
      • Biomedical Imaging
        • Introduction
        • Foundation
          • Data Model
          • Key Concepts
            • Arrays
            • Ingestion
            • Reads
            • User Defined Functions
          • Storage Format Spec
        • Quickstart
        • Tutorials
          • Basics
            • Ingestion
            • Read
              • OpenSlide
              • TileDB-Py
          • Advanced
            • Batched Ingestion
            • Chunked Ingestion
            • Machine Learning
              • PyTorch
            • Napari
    • Files
  • API Reference
  • Self-Hosting
    • Installation
    • Upgrades
    • Administrative Tasks
    • Image Customization
      • Customize User-Defined Function Images
      • AWS ECR Container Registry
      • Customize Jupyter Notebook Images
    • Single Sign-On
      • Configure Single Sign-On
      • OpenID Connect
      • Okta SCIM
      • Microsoft Entra
  • Glossary
  1. Structure
  2. Arrays
  3. Tutorials
  4. Advanced
  5. Advanced Reads
  6. Time Traveling
  7. Schema Evolution

Run Time Traveling on Array Schema Evolution

arrays
tutorials
python
schema evolution
time traveling
Learn how to time travel on array schema evolution, which is useful for when your array data model changes over time.
How to run this tutorial

You can run this tutorial in two ways:

  1. Locally on your machine.
  2. On TileDB Cloud.

However, since TileDB Cloud has a free tier, we strongly recommend that you sign up and run everything there, as that requires no installations or deployment.

This tutorial demonstrates the time traveling functionality on array schema evolution. For more information on time traveling and array schema evolution, visit the following sections:

  • Key Concepts: Time Traveling
  • Key Concepts: Schema Evolution
  • Tutorials: Run Array Schema Evolution

First, import the necessary libraries, set the array URI (i.e., its path, which in this tutorial will be on local storage), and delete any previously created arrays with the same name.

  • Python
# Import necessary libraries
import os.path
import shutil

import numpy as np
import tiledb

# Set array URI
array_uri = os.path.expanduser("~/time_traveling_schema_evolution")

# Delete array if it already exists
if os.path.exists(array_uri):
    shutil.rmtree(array_uri)

Next, create the array by specifying its schema. This example uses a dense array, but the described time traveling functionality is applicable to any array.

  • Python
# Create the two dimensions
d1 = tiledb.Dim(name="d1", domain=(1, 4), tile=2, dtype=np.int32)
d2 = tiledb.Dim(name="d2", domain=(1, 4), tile=2, dtype=np.int32)

# Create a domain using the two dimensions
dom = tiledb.Domain(d1, d2)

# Create two attributes
a1 = tiledb.Attr(name="a1", dtype=np.int32)
a2 = tiledb.Attr(name="a2", dtype=np.float32)

# Create the array schema, setting `sparse=False` to indicate a dense array.
sch = tiledb.ArraySchema(domain=dom, sparse=False, attrs=[a1, a2])

# Create the array on disk (it will initially be empty)
tiledb.Array.create(array_uri, sch)

Write some data to the array. Also obtain the timestamp at which the write is performed, as you will use it later for time traveling.

  • Python
# Prepare some data in NumPy arrays
a1_data = np.array(
    [[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16]], dtype=np.int32
)
a2_data = np.array(
    [
        [1.1, 2.2, 3.3, 4.4],
        [5.5, 6.6, 7.7, 8.8],
        [9.9, 10.10, 11.11, 12.12],
        [13.13, 14.14, 15.15, 16.16],
    ],
    dtype=np.float32,
)

# Write data to the array and retrieve the write timestamp `ts1
with tiledb.open(array_uri, "w") as A:
    A[:] = {"a1": a1_data, "a2": a2_data}
    ts = list(A.last_write_info.values())[0][0]

Evolve the schema, setting for convenience the timestamp of this evolution to one millisecond after the last write. This will facilitate demonstrating time traveling below.

  • Python
se = tiledb.ArraySchemaEvolution()
se.timestamp(ts + 1)  # Perform the evolution at timestamp ts+1
se.drop_attribute("a1")
se.array_evolve(array_uri)

The array lives in the folder specified by array_uri. Other sections of Academy explain the contents of the array folder, but you’ll find two files in the __schema directory: one created when the array was initially created, and one created during schema evolution. TileDB prefixes these files with their creation timestamps, which you’ll use for time travel.

/Users/stavrospapadopoulos/time_traveling_schema_evolution
├── __commits
│   └── __1715970039667_1715970039667_3cebbab45fe96ecca2f0b23ce012b275_21.wrt
├── __fragment_meta
├── __fragments
│   └── __1715970039667_1715970039667_3cebbab45fe96ecca2f0b23ce012b275_21
│       ├── __fragment_metadata.tdb
│       ├── a0.tdb
│       └── a1.tdb
├── __labels
├── __meta
└── __schema
    ├── __1715970039662_1715970039662_00000002d4a272e594888f7a4a30d24a
    ├── __1715970039668_1715970039668_229d22714dd85612efe0dfa957a83587
    └── __enumerations

9 directories, 6 files

Next, read the array at different timestamps:

  • No timestamp provided: This means read at the current timestamp, which will return data after the initial write and the schema evolution occured. This means that only one attribute is present with its data populated.
  • Python
# Read at current timestamp
with tiledb.open(array_uri, "r") as A:
    print("Read at current timestamp:")
    print(A.schema)
    print(A[:])
Read at current timestamp:
ArraySchema(
  domain=Domain(*[
    Dim(name='d1', domain=(1, 4), tile=2, dtype='int32', filters=FilterList([ZstdFilter(level=-1), ])),
    Dim(name='d2', domain=(1, 4), tile=2, dtype='int32', filters=FilterList([ZstdFilter(level=-1), ])),
  ]),
  attrs=[
    Attr(name='a2', dtype='float32', var=False, nullable=False, enum_label=None),
  ],
  cell_order='row-major',
  tile_order='row-major',
  sparse=False,
)

OrderedDict({'a2': array([[ 1.1 ,  2.2 ,  3.3 ,  4.4 ],
       [ 5.5 ,  6.6 ,  7.7 ,  8.8 ],
       [ 9.9 , 10.1 , 11.11, 12.12],
       [13.13, 14.14, 15.15, 16.16]], dtype=float32)})
  • At timestamp just before the schema evolution: This will include both initial attributes with their initial written data.
  • Python
# Read at timestamp just before schema evolution
with tiledb.open(array_uri, "r", timestamp=ts) as A:
    print("Read at timestamp just before schema evolution:")
    print(A.schema)
    print(A[:])
Read at timestamp just before schema evolution:
ArraySchema(
  domain=Domain(*[
    Dim(name='d1', domain=(1, 4), tile=2, dtype='int32', filters=FilterList([ZstdFilter(level=-1), ])),
    Dim(name='d2', domain=(1, 4), tile=2, dtype='int32', filters=FilterList([ZstdFilter(level=-1), ])),
  ]),
  attrs=[
    Attr(name='a1', dtype='int32', var=False, nullable=False, enum_label=None),
    Attr(name='a2', dtype='float32', var=False, nullable=False, enum_label=None),
  ],
  cell_order='row-major',
  tile_order='row-major',
  sparse=False,
)

OrderedDict({'a1': array([[ 1,  2,  3,  4],
       [ 5,  6,  7,  8],
       [ 9, 10, 11, 12],
       [13, 14, 15, 16]], dtype=int32), 'a2': array([[ 1.1 ,  2.2 ,  3.3 ,  4.4 ],
       [ 5.5 ,  6.6 ,  7.7 ,  8.8 ],
       [ 9.9 , 10.1 , 11.11, 12.12],
       [13.13, 14.14, 15.15, 16.16]], dtype=float32)})
  • At timestamp just after the schema evolution: This is identical to when reading the array at current timestamp (i.e., only one attribute is present with its data populated, since the evolution dropped one attribute).
  • Python
# Read at timestamp after schema evolution
with tiledb.open(array_uri, "r", timestamp=ts + 1) as A:
    print("Read at timestamp after schema evolution:")
    print(A.schema)
    print(A[:])
Read at timestamp after schema evolution:
ArraySchema(
  domain=Domain(*[
    Dim(name='d1', domain=(1, 4), tile=2, dtype='int32', filters=FilterList([ZstdFilter(level=-1), ])),
    Dim(name='d2', domain=(1, 4), tile=2, dtype='int32', filters=FilterList([ZstdFilter(level=-1), ])),
  ]),
  attrs=[
    Attr(name='a2', dtype='float32', var=False, nullable=False, enum_label=None),
  ],
  cell_order='row-major',
  tile_order='row-major',
  sparse=False,
)

OrderedDict({'a2': array([[ 1.1 ,  2.2 ,  3.3 ,  4.4 ],
       [ 5.5 ,  6.6 ,  7.7 ,  8.8 ],
       [ 9.9 , 10.1 , 11.11, 12.12],
       [13.13, 14.14, 15.15, 16.16]], dtype=float32)})
  • At timestamp range that includes only the schema evolution: One attribute is dropped (leaving only one attribute), but the original write is outside the timestamp range. Therefore, the attribute values are not written, and the read returns empty values.
  • Python
# Read at timestamp when only schema evolution occurred
with tiledb.open(array_uri, "r", timestamp=(ts + 1, ts + 1)) as A:
    print("Read at timestamp range when only schema evolution occurred:")
    print(A.schema)
    print(A[:])
Read at timestamp range when only schema evolution occurred:
ArraySchema(
  domain=Domain(*[
    Dim(name='d1', domain=(1, 4), tile=2, dtype='int32', filters=FilterList([ZstdFilter(level=-1), ])),
    Dim(name='d2', domain=(1, 4), tile=2, dtype='int32', filters=FilterList([ZstdFilter(level=-1), ])),
  ]),
  attrs=[
    Attr(name='a2', dtype='float32', var=False, nullable=False, enum_label=None),
  ],
  cell_order='row-major',
  tile_order='row-major',
  sparse=False,
)

OrderedDict({'a2': array([[nan, nan, nan, nan],
       [nan, nan, nan, nan],
       [nan, nan, nan, nan],
       [nan, nan, nan, nan]], dtype=float32)})

Clean up in the end by deleting the array.

  • Python
# Delete the array
if os.path.exists(array_uri):
    shutil.rmtree(array_uri)
Array Metadata
Array Upgrade