1. Structure
  2. Life Sciences
  3. Population Genomics
  4. Tutorials
  5. Basics
  6. Basic TileDB Cloud
  • Home
  • What is TileDB?
  • Get Started
  • Explore Content
  • Accounts
    • Individual Accounts
      • Apply for the Free Tier
      • Profile
        • Overview
        • Cloud Credentials
        • Storage Paths
        • REST API Tokens
        • Credits
    • Organization Admins
      • Create an Organization
      • Profile
        • Overview
        • Members
        • Cloud Credentials
        • Storage Paths
        • Billing
      • API Tokens
    • Organization Members
      • Organization Invitations
      • Profile
        • Overview
        • Members
        • Cloud Credentials
        • Storage Paths
        • Billing
      • API Tokens
  • Catalog
    • Introduction
    • Data
      • Arrays
      • Tables
      • Single-Cell (SOMA)
      • Genomics (VCF)
      • Biomedical Imaging
      • Vector Search
      • Files
    • Code
      • Notebooks
      • Dashboards
      • User-Defined Functions
      • Task Graphs
      • ML Models
    • Groups
    • Marketplace
    • Search
  • Collaborate
    • Introduction
    • Organizations
    • Access Control
      • Introduction
      • Share Assets
      • Asset Permissions
      • Public Assets
    • Logging
    • Marketplace
  • Analyze
    • Introduction
    • Slice Data
    • Multi-Region Redirection
    • Notebooks
      • Launch a Notebook
      • Usage
      • Widgets
      • Notebook Image Dependencies
    • Dashboards
      • Dashboards
      • Streamlit
    • Preview
    • User-Defined Functions
    • Task Graphs
    • Serverless SQL
    • Monitor
      • Task Log
      • Task Graph Log
  • Scale
    • Introduction
    • Task Graphs
    • API Usage
  • Structure
    • Why Structure Is Important
    • Arrays
      • Introduction
      • Quickstart
      • Foundation
        • Array Data Model
        • Key Concepts
          • Storage
            • Arrays
            • Dimensions
            • Attributes
            • Cells
            • Domain
            • Tiles
            • Data Layout
            • Compression
            • Encryption
            • Tile Filters
            • Array Schema
            • Schema Evolution
            • Fragments
            • Fragment Metadata
            • Commits
            • Indexing
            • Array Metadata
            • Datetimes
            • Groups
            • Object Stores
          • Compute
            • Writes
            • Deletions
            • Consolidation
            • Vacuuming
            • Time Traveling
            • Reads
            • Query Conditions
            • Aggregates
            • User-Defined Functions
            • Distributed Compute
            • Concurrency
            • Parallelism
        • Storage Format Spec
      • Tutorials
        • Basics
          • Basic Dense Array
          • Basic Sparse Array
          • Array Metadata
          • Compression
          • Encryption
          • Data Layout
          • Tile Filters
          • Datetimes
          • Multiple Attributes
          • Variable-Length Attributes
          • String Dimensions
          • Nullable Attributes
          • Multi-Range Reads
          • Query Conditions
          • Aggregates
          • Deletions
          • Catching Errors
          • Configuration
          • Basic S3 Example
          • Basic TileDB Cloud
          • fromDataFrame
          • Palmer Penguins
        • Advanced
          • Schema Evolution
          • Advanced Writes
            • Write at a Timestamp
            • Get Fragment Info
            • Consolidation
              • Fragments
              • Fragment List
              • Consolidation Plan
              • Commits
              • Fragment Metadata
              • Array Metadata
            • Vacuuming
              • Fragments
              • Commits
              • Fragment Metadata
              • Array Metadata
          • Advanced Reads
            • Get Fragment Info
            • Time Traveling
              • Introduction
              • Fragments
              • Array Metadata
              • Schema Evolution
          • Array Upgrade
          • Backends
            • Amazon S3
            • Azure Blob Storage
            • Google Cloud Storage
            • MinIO
            • Lustre
          • Virtual Filesystem
          • User-Defined Functions
          • Distributed Compute
          • Result Estimation
          • Incomplete Queries
        • Management
          • Array Schema
          • Groups
          • Object Management
        • Performance
          • Summary of Factors
          • Dense vs. Sparse
          • Dimensions vs. Attributes
          • Compression
          • Tiling and Data Layout
          • Tuning Writes
          • Tuning Reads
      • API Reference
    • Tables
      • Introduction
      • Quickstart
      • Foundation
        • Data Model
        • Key Concepts
          • Indexes
          • Columnar Storage
          • Compression
          • Data Manipulation
          • Optimize Tables
          • ACID
          • Serverless SQL
          • SQL Connectors
          • Dataframes
          • CSV Ingestion
      • Tutorials
        • Basics
          • Ingestion with SQL
          • CSV Ingestion
          • Basic S3 Example
          • Running Locally
        • Advanced
          • Scalable Ingestion
          • Scalable Queries
      • API Reference
    • AI & ML
      • Vector Search
        • Introduction
        • Quickstart
        • Foundation
          • Data Model
          • Key Concepts
            • Vector Search
            • Vector Databases
            • Algorithms
            • Distance Metrics
            • Updates
            • Deployment Methods
            • Architecture
            • Distributed Compute
          • Storage Format Spec
        • Tutorials
          • Basics
            • Ingestion & Querying
            • Updates
            • Deletions
            • Basic S3 Example
            • Running Locally
          • Advanced
            • Versioning
            • Time Traveling
            • Consolidation
            • Distributed Compute
            • RAG LLM
            • LLM Memory
            • File Search
            • Image Search
            • Protein Search
          • Performance
        • API Reference
      • ML Models
        • Introduction
        • Quickstart
        • Foundation
          • Basics
          • Storage
          • Cloud Execution
          • Why TileDB for Machine Learning
        • Tutorials
          • Ingestion
            • Data Ingestion
              • Dense Datasets
              • Sparse Datasets
            • ML Model Ingestion
          • Management
            • Array Schema
            • Machine Learning: Groups
            • Time Traveling
    • Life Sciences
      • Single-cell
        • Introduction
        • Quickstart
        • Foundation
          • Data Model
          • Key Concepts
            • Data Structures
            • Use of Apache Arrow
            • Join IDs
            • State Management
            • TileDB Cloud URIs
          • SOMA API Specification
        • Tutorials
          • Data Ingestion
          • Bulk Ingestion Tutorial
          • Data Access
          • Distributed Compute
          • Basic S3 Example
          • Multi-Experiment Queries
          • Appending Data to a SOMA Experiment
          • Add New Measurements
          • SQL Queries
          • Running Locally
          • Shapes in TileDB-SOMA
          • Drug Discovery App
        • Spatial
          • Introduction
          • Foundation
            • Spatial Data Model
            • Data Structures
          • Tutorials
            • Spatial Data Ingestion
            • Access Spatial Data
            • Manage Coordinate Spaces
        • API Reference
      • Population Genomics
        • Introduction
        • Quickstart
        • Foundation
          • Data Model
          • Key Concepts
            • The N+1 Problem
            • Architecture
            • Arrays
            • Ingestion
            • Reads
            • Variant Statistics
            • Annotations
            • User-Defined Functions
            • Tables and SQL
            • Distributed Compute
          • Storage Format Spec
        • Tutorials
          • Basics
            • Basic Ingestion
            • Basic Queries
            • Export to VCF
            • Add New Samples
            • Deleting Samples
            • Basic S3 Example
            • Basic TileDB Cloud
          • Advanced
            • Scalable Ingestion
            • Scalable Queries
            • Query Transforms
            • Handling Large Queries
            • Annotations
              • Finding Annotations
              • Embedded Annotations
              • External Annotations
              • Annotation VCFs
              • Ingesting Annotations
            • Variant Statistics
            • Tables and SQL
            • User-Defined Functions
            • Sample Metadata
            • Split VCF
          • Performance
        • API Reference
          • Command Line Interface
          • Python API
          • Cloud API
      • Biomedical Imaging
        • Introduction
        • Foundation
          • Data Model
          • Key Concepts
            • Arrays
            • Ingestion
            • Reads
            • User Defined Functions
          • Storage Format Spec
        • Quickstart
        • Tutorials
          • Basics
            • Ingestion
            • Read
              • OpenSlide
              • TileDB-Py
          • Advanced
            • Batched Ingestion
            • Chunked Ingestion
            • Machine Learning
              • PyTorch
            • Napari
    • Files
  • API Reference
  • Self-Hosting
    • Installation
    • Upgrades
    • Administrative Tasks
    • Image Customization
      • Customize User-Defined Function Images
      • AWS ECR Container Registry
      • Customize Jupyter Notebook Images
    • Single Sign-On
      • Configure Single Sign-On
      • OpenID Connect
      • Okta SCIM
      • Microsoft Entra
  • Glossary
  1. Structure
  2. Life Sciences
  3. Population Genomics
  4. Tutorials
  5. Basics
  6. Basic TileDB Cloud

Basic TileDB Cloud

life sciences
genomics (vcf)
tutorials
remote access
Demonstration of basic usage of TileDB-VCF on TileDB Cloud.
How to run this tutorial

You can run this tutorial only on TileDB Cloud. However, TileDB Cloud has a free tier. We strongly recommend that you sign up and run everything there, as that requires no installations or deployment.

This tutorial shows basic usage of TileDB-VCF on TileDB Cloud. It assumes you have already completed the Get Started section.

Start by setting some environment variables. It can look something like this:

  • Python
import os

os.environ["S3_BUCKET"] = "s3://<your_bucket_name>"
os.environ["TILEDB_ACCOUNT"] = "<your_tiledb_account_username>"

Next, fetch the environment variables you created and define the global context:

  • Python
import os

import tiledb

# You should set the appropriate environment variables with your keys.
# Get the keys from the environment variables.
tiledb_account = os.environ["TILEDB_ACCOUNT"]
tiledb_token = os.environ["TILEDB_REST_TOKEN"]
# or use your username and password (not recommended)
# tiledb_username = os.environ["TILEDB_USERNAME"]
# tiledb_password = os.environ["TILEDB_PASSWORD"]


# Get the bucket and region from environment variables
s3_bucket = os.environ["S3_BUCKET"]

# Set the AWS keys and region to the config of the default context
# This context initialization can be performed only once.
cfg = tiledb.Config(
    {
        "vfs.s3.no_sign_request": "true",  # boosts performance when accessing public S3 buckets
        "rest.token": tiledb_token,
        # or use your username and password (not recommended)
        # "rest.username": tiledb_username,
        # "rest.password": tiledb_password,
    }
)
ctx = tiledb.Ctx(cfg)

The rest of the tutorial is very similar to the Tutorials: Basic Ingestion section, whereas you can create, write, and read any VCF dataset in the same manner after setting up your TileDB credentials as shown above.

First, import the necessary libraries, set the TileDB-VCF dataset URI (i.e., its path, which in this tutorial will be on local storage), and delete any previously created datasets with the same name.

  • Python
import os.path

import tiledb.cloud
import tiledbvcf

# Print library versions
print("TileDB core version: {}".format(tiledb.libtiledb.version()))
print("TileDB-Py version: {}".format(tiledb.version()))
print("TileDB-VCF version: {}".format(tiledbvcf.version))
print("TileDB-Cloud-Py version: {}".format(tiledb.cloud.version.version))

# Set array URI
vcf_name = "basic_tiledb_cloud"
vcf_uri = "tiledb://" + tiledb_account + "/" + vcf_name

# Clean up VCF dataset if it already exists
if tiledb.object_type(vcf_uri, ctx=ctx) == "group":
    tiledb.cloud.asset.delete(vcf_uri, recursive=True)
TileDB core version: (2, 24, 2)
TileDB-Py version: (0, 30, 2)
TileDB-VCF version: 0.33.3
TileDB-Cloud-Py version: 0.12.17

Specify the VCF samples you would like to ingest.

  • Python
# Specify the sample URIs
vcf_bucket = "s3://tiledb-inc-demo-data/examples/notebooks/vcfs/1kg-dragen"
samples_to_ingest = [
    "HG00096_chr21.gvcf.gz",
    "HG00097_chr21.gvcf.gz",
    "HG00099_chr21.gvcf.gz",
    "HG00100_chr21.gvcf.gz",
    "HG00101_chr21.gvcf.gz",
]
sample_uris = [f"{vcf_bucket}/{s}" for s in samples_to_ingest]
sample_uris
['s3://tiledb-inc-demo-data/examples/notebooks/vcfs/1kg-dragen/HG00096_chr21.gvcf.gz',
 's3://tiledb-inc-demo-data/examples/notebooks/vcfs/1kg-dragen/HG00097_chr21.gvcf.gz',
 's3://tiledb-inc-demo-data/examples/notebooks/vcfs/1kg-dragen/HG00099_chr21.gvcf.gz',
 's3://tiledb-inc-demo-data/examples/notebooks/vcfs/1kg-dragen/HG00100_chr21.gvcf.gz',
 's3://tiledb-inc-demo-data/examples/notebooks/vcfs/1kg-dragen/HG00101_chr21.gvcf.gz']

Next, create the TileDB-VCF dataset and ingest the specified samples. The only difference between TileDB Cloud and TileDB-VCF open-source when creating datasets is that the TileDB Cloud URI should be of the form: tiledb://<account>/s3://<bucket>/<vcf_dataset>. TileDB Cloud understands that you are trying to create a VCF dataset in S3 URI s3://<bucket>/<vcf_dataset> and register it under <account>. After you create the dataset, you can access the array as tiledb://<account>/<vcf_dataset>.

Warning

The following block may take a lot of time if you are running it from your local machine with poor internet connection. For best performance, it is highly recommended that you run it from a TileDB Cloud notebook.

  • Python
# NOTE: This is the only special thing about TileDB Cloud when
# creating and registering VCF datasets: the URI should be of the form:
# tiledb://<account>/s3://<bucket>/<vcf_name>
# TileDB Cloud understands that you are trying to create VCF dataset in
# s3://<bucket>/<vcf_name> and register it under <account>.
# After the VCF dataset is created and registered, it will be accessible
# simply as tiledb://<account>/<vcf_name>
vcf_uri_reg = "tiledb://" + tiledb_account + "/" + s3_bucket + "/" + vcf_name

# Open a VCF dataset in write mode.
# Notice you need ot pass the TileDB Cloud config for authentication.
ds = tiledbvcf.Dataset(uri=vcf_uri_reg, mode="w", tiledb_config=cfg)

# Create empty VCF dataset
ds.create_dataset()

# Ingest samples
ds.ingest_samples(sample_uris=sample_uris)

Read some data using TileDB-VCF. Again, you access the array with URI tiledb://<account>/<vcf_dataset>.

  • Python
# Open the Dataset in read mode.
# Notice you need to pass the TileDB Cloud config for authentication.
ds = tiledbvcf.Dataset(uri=vcf_uri, mode="r", tiledb_config=cfg)

# Read a chromosome region, and subset on samples and attributes
df = ds.read(
    regions=["chr21:8220186-8405573"],
    samples=["HG00096", "HG00097"],
    attrs=["sample_name", "contig", "pos_start", "pos_end", "alleles", "fmt_GT"],
)
df
sample_name contig pos_start pos_end alleles fmt_GT
0 HG00096 chr21 8220186 8220206 [TCTCCCTCCCTCCCTCCCTCC, T, TCTCC, TCTCCCTCC, T... [0, 1]
1 HG00097 chr21 8220186 8220194 [TCTCCCTCC, T, TCTCC, CCTCCCTCC, <NON_REF>] [1, 2]
2 HG00096 chr21 8220187 8220208 [C, <NON_REF>] [-1, -1]
3 HG00097 chr21 8220187 8220198 [C, <NON_REF>] [-1, -1]
4 HG00097 chr21 8220199 8220199 [C, <NON_REF>] [0, 0]
... ... ... ... ... ... ...
7337 HG00097 chr21 8405412 8405523 [T, <NON_REF>] [0, 0]
7338 HG00096 chr21 8405524 8405572 [C, <NON_REF>] [0, 0]
7339 HG00097 chr21 8405524 8405572 [C, <NON_REF>] [0, 0]
7340 HG00096 chr21 8405573 8405579 [ATGTGTG, ATGTG, A, ATG, ATGTGTGTG, <NON_REF>] [0, 1]
7341 HG00097 chr21 8405573 8405579 [ATGTGTG, ATG, ATGTG, A, ATGTGTGTGTGTG, ATGTAT... [0, 1]

7342 rows × 6 columns

Clean up in the end by deleting the dataset. This command will unregister the VCF dataset from TileDB Cloud and physically delete all groups and arrays comprising the dataset from the physical storage.

  • Python
# Clean up VCF dataset
if tiledb.object_type(vcf_uri, ctx=ctx) == "group":
    tiledb.cloud.asset.delete(vcf_uri, recursive=True)
Basic S3 Example
Advanced