1. Structure
  2. AI & ML
  3. Vector Search
  4. Tutorials
  5. Advanced
  6. Time Traveling
  • Home
  • What is TileDB?
  • Get Started
  • Explore Content
  • Accounts
    • Individual Accounts
      • Apply for the Free Tier
      • Profile
        • Overview
        • Cloud Credentials
        • Storage Paths
        • REST API Tokens
        • Credits
    • Organization Admins
      • Create an Organization
      • Profile
        • Overview
        • Members
        • Cloud Credentials
        • Storage Paths
        • Billing
      • API Tokens
    • Organization Members
      • Organization Invitations
      • Profile
        • Overview
        • Members
        • Cloud Credentials
        • Storage Paths
        • Billing
      • API Tokens
  • Catalog
    • Introduction
    • Data
      • Arrays
      • Tables
      • Single-Cell (SOMA)
      • Genomics (VCF)
      • Biomedical Imaging
      • Vector Search
      • Files
    • Code
      • Notebooks
      • Dashboards
      • User-Defined Functions
      • Task Graphs
      • ML Models
    • Groups
    • Marketplace
    • Search
  • Collaborate
    • Introduction
    • Organizations
    • Access Control
      • Introduction
      • Share Assets
      • Asset Permissions
      • Public Assets
    • Logging
    • Marketplace
  • Analyze
    • Introduction
    • Slice Data
    • Multi-Region Redirection
    • Notebooks
      • Launch a Notebook
      • Usage
      • Widgets
      • Notebook Image Dependencies
    • Dashboards
      • Dashboards
      • Streamlit
    • Preview
    • User-Defined Functions
    • Task Graphs
    • Serverless SQL
    • Monitor
      • Task Log
      • Task Graph Log
  • Scale
    • Introduction
    • Task Graphs
    • API Usage
  • Structure
    • Why Structure Is Important
    • Arrays
      • Introduction
      • Quickstart
      • Foundation
        • Array Data Model
        • Key Concepts
          • Storage
            • Arrays
            • Dimensions
            • Attributes
            • Cells
            • Domain
            • Tiles
            • Data Layout
            • Compression
            • Encryption
            • Tile Filters
            • Array Schema
            • Schema Evolution
            • Fragments
            • Fragment Metadata
            • Commits
            • Indexing
            • Array Metadata
            • Datetimes
            • Groups
            • Object Stores
          • Compute
            • Writes
            • Deletions
            • Consolidation
            • Vacuuming
            • Time Traveling
            • Reads
            • Query Conditions
            • Aggregates
            • User-Defined Functions
            • Distributed Compute
            • Concurrency
            • Parallelism
        • Storage Format Spec
      • Tutorials
        • Basics
          • Basic Dense Array
          • Basic Sparse Array
          • Array Metadata
          • Compression
          • Encryption
          • Data Layout
          • Tile Filters
          • Datetimes
          • Multiple Attributes
          • Variable-Length Attributes
          • String Dimensions
          • Nullable Attributes
          • Multi-Range Reads
          • Query Conditions
          • Aggregates
          • Deletions
          • Catching Errors
          • Configuration
          • Basic S3 Example
          • Basic TileDB Cloud
          • fromDataFrame
          • Palmer Penguins
        • Advanced
          • Schema Evolution
          • Advanced Writes
            • Write at a Timestamp
            • Get Fragment Info
            • Consolidation
              • Fragments
              • Fragment List
              • Consolidation Plan
              • Commits
              • Fragment Metadata
              • Array Metadata
            • Vacuuming
              • Fragments
              • Commits
              • Fragment Metadata
              • Array Metadata
          • Advanced Reads
            • Get Fragment Info
            • Time Traveling
              • Introduction
              • Fragments
              • Array Metadata
              • Schema Evolution
          • Array Upgrade
          • Backends
            • Amazon S3
            • Azure Blob Storage
            • Google Cloud Storage
            • MinIO
            • Lustre
          • Virtual Filesystem
          • User-Defined Functions
          • Distributed Compute
          • Result Estimation
          • Incomplete Queries
        • Management
          • Array Schema
          • Groups
          • Object Management
        • Performance
          • Summary of Factors
          • Dense vs. Sparse
          • Dimensions vs. Attributes
          • Compression
          • Tiling and Data Layout
          • Tuning Writes
          • Tuning Reads
      • API Reference
    • Tables
      • Introduction
      • Quickstart
      • Foundation
        • Data Model
        • Key Concepts
          • Indexes
          • Columnar Storage
          • Compression
          • Data Manipulation
          • Optimize Tables
          • ACID
          • Serverless SQL
          • SQL Connectors
          • Dataframes
          • CSV Ingestion
      • Tutorials
        • Basics
          • Ingestion with SQL
          • CSV Ingestion
          • Basic S3 Example
          • Running Locally
        • Advanced
          • Scalable Ingestion
          • Scalable Queries
      • API Reference
    • AI & ML
      • Vector Search
        • Introduction
        • Quickstart
        • Foundation
          • Data Model
          • Key Concepts
            • Vector Search
            • Vector Databases
            • Algorithms
            • Distance Metrics
            • Updates
            • Deployment Methods
            • Architecture
            • Distributed Compute
          • Storage Format Spec
        • Tutorials
          • Basics
            • Ingestion & Querying
            • Updates
            • Deletions
            • Basic S3 Example
            • Running Locally
          • Advanced
            • Versioning
            • Time Traveling
            • Consolidation
            • Distributed Compute
            • RAG LLM
            • LLM Memory
            • File Search
            • Image Search
            • Protein Search
          • Performance
        • API Reference
      • ML Models
        • Introduction
        • Quickstart
        • Foundation
          • Basics
          • Storage
          • Cloud Execution
          • Why TileDB for Machine Learning
        • Tutorials
          • Ingestion
            • Data Ingestion
              • Dense Datasets
              • Sparse Datasets
            • ML Model Ingestion
          • Management
            • Array Schema
            • Machine Learning: Groups
            • Time Traveling
    • Life Sciences
      • Single-cell
        • Introduction
        • Quickstart
        • Foundation
          • Data Model
          • Key Concepts
            • Data Structures
            • Use of Apache Arrow
            • Join IDs
            • State Management
            • TileDB Cloud URIs
          • SOMA API Specification
        • Tutorials
          • Data Ingestion
          • Bulk Ingestion Tutorial
          • Data Access
          • Distributed Compute
          • Basic S3 Example
          • Multi-Experiment Queries
          • Appending Data to a SOMA Experiment
          • Add New Measurements
          • SQL Queries
          • Running Locally
          • Shapes in TileDB-SOMA
          • Drug Discovery App
        • Spatial
          • Introduction
          • Foundation
            • Spatial Data Model
            • Data Structures
          • Tutorials
            • Spatial Data Ingestion
            • Access Spatial Data
            • Manage Coordinate Spaces
        • API Reference
      • Population Genomics
        • Introduction
        • Quickstart
        • Foundation
          • Data Model
          • Key Concepts
            • The N+1 Problem
            • Architecture
            • Arrays
            • Ingestion
            • Reads
            • Variant Statistics
            • Annotations
            • User-Defined Functions
            • Tables and SQL
            • Distributed Compute
          • Storage Format Spec
        • Tutorials
          • Basics
            • Basic Ingestion
            • Basic Queries
            • Export to VCF
            • Add New Samples
            • Deleting Samples
            • Basic S3 Example
            • Basic TileDB Cloud
          • Advanced
            • Scalable Ingestion
            • Scalable Queries
            • Query Transforms
            • Handling Large Queries
            • Annotations
              • Finding Annotations
              • Embedded Annotations
              • External Annotations
              • Annotation VCFs
              • Ingesting Annotations
            • Variant Statistics
            • Tables and SQL
            • User-Defined Functions
            • Sample Metadata
            • Split VCF
          • Performance
        • API Reference
          • Command Line Interface
          • Python API
          • Cloud API
      • Biomedical Imaging
        • Introduction
        • Foundation
          • Data Model
          • Key Concepts
            • Arrays
            • Ingestion
            • Reads
            • User Defined Functions
          • Storage Format Spec
        • Quickstart
        • Tutorials
          • Basics
            • Ingestion
            • Read
              • OpenSlide
              • TileDB-Py
          • Advanced
            • Batched Ingestion
            • Chunked Ingestion
            • Machine Learning
              • PyTorch
            • Napari
    • Files
  • API Reference
  • Self-Hosting
    • Installation
    • Upgrades
    • Administrative Tasks
    • Image Customization
      • Customize User-Defined Function Images
      • AWS ECR Container Registry
      • Customize Jupyter Notebook Images
    • Single Sign-On
      • Configure Single Sign-On
      • OpenID Connect
      • Okta SCIM
      • Microsoft Entra
  • Glossary

On this page

  • Setup
  • Populate index
  • Query over timestamps
  • Clean up
  • What’s next?
  1. Structure
  2. AI & ML
  3. Vector Search
  4. Tutorials
  5. Advanced
  6. Time Traveling

Vector Search: Time Traveling

ai/ml
vector search
tutorials
time traveling
Each update and deletion creates an index version in TileDB-Vector-Search, and you can time travel over these versions.
How to run this tutorial

We recommend running this tutorial, as well as the other various tutorials in the Tutorials section, inside TileDB Cloud. This will allow you to quickly experiment avoiding all the installation, deployment, and configuration hassles. Sign up for the free tier, spin up a TileDB Cloud notebook with a Python kernel, and follow the tutorial instructions. If you wish to learn how to run tutorials locally on your machine, read the Tutorials: Running Locally tutorial.

This tutorial shows how you can perform time traveling with TileDB-Vector-Search (i.e., how to query different index “views” over the various versions that were created via vector updates or deletions). We recommend reading the following sections before proceeding with this tutorial:

  • Tutorials: Versioning
  • Array Key Concepts: Time traveling

Setup

First, import the appropriate libraries, set the index URI, create a query vector, and delete any previously created data.

# Import necessary libraries
import os
import shutil

import numpy as np
import tiledb.vector_search as vs

# Set the index URI for this tutorial
index_uri = os.path.expanduser("~/time_traveling")

# Set the query vector
query_vector = np.array([[2, 2, 2]], dtype=np.float32)

# Clean up previous data
if os.path.exists(index_uri):
    shutil.rmtree(index_uri)

Next, create an empty index:

# Create an index, where the dimensionality of each vector is 3,
# the type of the vector values is float32, and the index will
# use 3 partitions.
index = vs.ivf_flat_index.create(
    uri=index_uri, dimensions=3, partitions=3, vector_type=np.dtype(np.float32)
)

Populate index

Perform a series of updates, starting with adding some new vectors in bulk. Note that here you will provide timestamp = 1 as a parameter to the update_batch command. In other tutorials, this parameter was omitted, and a default timestamp was set to the current time (in milliseconds since epoch).

# Prepare some vectors to add
update_vectors = np.empty([5], dtype=object)
update_vectors[0] = np.array([0, 0, 0], dtype=np.dtype(np.float32))
update_vectors[1] = np.array([1, 1, 1], dtype=np.dtype(np.float32))
update_vectors[2] = np.array([2, 2, 2], dtype=np.dtype(np.float32))
update_vectors[3] = np.array([3, 3, 3], dtype=np.dtype(np.float32))
update_vectors[4] = np.array([4, 4, 4], dtype=np.dtype(np.float32))

# Add the vectors to the index, specifying a timestamp (1)
index.update_batch(
    vectors=update_vectors, external_ids=np.array([0, 1, 2, 3, 4]), timestamp=1
)

Next, update the values of some existing vectors one by one at timestamp = 2 and timestamp = 3, respectively. Then perform a bulk update at timestamp = 4.

# Update vectors individually
index.update(
    vector=np.array([10, 10, 10], dtype=np.dtype(np.float32)),
    external_id=1,
    timestamp=2,
)
index.update(
    vector=np.array([11, 11, 11], dtype=np.dtype(np.float32)),
    external_id=2,
    timestamp=3,
)

Delete some vectors at timestamp = 5:

# Delete the vectors with external ids 0 and 1, but at a later timestamp
index.delete_batch(external_ids=[0, 1], timestamp=5)

Query over timestamps

In order to time travel, you need to “open” the index via one of the following ways:

  • At a specific timestamp (which will you give you a “view” of the array “as of” that timestamp).
  • At a timestamp range (which will give you a “view” of the array considering only updates and deletions that occurred within the timestamp range).

First, query the index at timestamp=10 (i.e., a timestamp after all the performed updates and deletions), which is equivalent to not providing any timestamp (which sets by default the timestamp to the current time). The result reflects the current state of the index, with all the changes considered.

# Query the vector with `timestamp=10`.
# The result will be the same if `timestamp` is omitted,
# which implies the current time in milliseconds (>> 10).
index = vs.IVFFlatIndex(uri=index_uri, timestamp=10)
result_d, result_i = index.query(query_vector, k=3, nprobe=3)
print("Result vector ids:\n")
print(result_i)
print("\nResult vector distances:\n")
print(result_d)
Result vector ids:

[[3 4 2]]

Result vector distances:

[[  3.  12. 243.]]

Now, query the index at timestamp=0 (i.e., before any change occurred). In that case, there will be no results.

# Query the vector with `timestamp=0` -> no results
index = vs.IVFFlatIndex(uri=index_uri, timestamp=0)
result_d, result_i = index.query(query_vector, k=3, nprobe=3, timestamp=0)
if result_i[0][0] == vs.index.MAX_UINT64:
    print("No results")
No results

Next, query the index at timestamp=1 (i.e., considering only the very first bulk insertions), which will ignore the two vector value updates and deletions.

# Query the vector with `timestamp=1`.
index = vs.IVFFlatIndex(uri=index_uri, timestamp=1)
result_d, result_i = index.query(query_vector, k=3, nprobe=3)
print("Result vector ids:\n")
print(result_i)
print("\nResult vector distances:\n")
print(result_d)
Result vector ids:

[[2 3 1]]

Result vector distances:

[[0. 3. 3.]]

Finally, query with timestamp=(1,2), which considers the initial bulk vector insertion, and only the update of vector with external id equal to 1. That will ignore the update of the vector with external id equal to 2 and the two vector deletions.

# Query the vector with `timestamp=(1,2)`.
index = vs.IVFFlatIndex(uri=index_uri, timestamp=(1, 2))
result_d, result_i = index.query(query_vector, k=3, nprobe=3)
print("Result vector ids:\n")
print(result_i)
print("\nResult vector distances:\n")
print(result_d)
Result vector ids:

[[2 3 0]]

Result vector distances:

[[ 0.  3. 12.]]

Clean up

Clean up in the end by removing the index:

# Clean up
if os.path.exists(index_uri):
    shutil.rmtree(index_uri)

What’s next?

Now that you learned about how to time travel with TileDB-Vector-Search, we recommend reading the Tutorials: Consolidation section.

Versioning
Consolidation