1. Structure
  2. Arrays
  3. Tutorials
  4. Basics
  5. Tile Filters
  • Home
  • What is TileDB?
  • Get Started
  • Explore Content
  • Accounts
    • Individual Accounts
      • Apply for the Free Tier
      • Profile
        • Overview
        • Cloud Credentials
        • Storage Paths
        • REST API Tokens
        • Credits
    • Organization Admins
      • Create an Organization
      • Profile
        • Overview
        • Members
        • Cloud Credentials
        • Storage Paths
        • Billing
      • API Tokens
    • Organization Members
      • Organization Invitations
      • Profile
        • Overview
        • Members
        • Cloud Credentials
        • Storage Paths
        • Billing
      • API Tokens
  • Catalog
    • Introduction
    • Data
      • Arrays
      • Tables
      • Single-Cell (SOMA)
      • Genomics (VCF)
      • Biomedical Imaging
      • Vector Search
      • Files
    • Code
      • Notebooks
      • Dashboards
      • User-Defined Functions
      • Task Graphs
      • ML Models
    • Groups
    • Marketplace
    • Search
  • Collaborate
    • Introduction
    • Organizations
    • Access Control
      • Introduction
      • Share Assets
      • Asset Permissions
      • Public Assets
    • Logging
    • Marketplace
  • Analyze
    • Introduction
    • Slice Data
    • Multi-Region Redirection
    • Notebooks
      • Launch a Notebook
      • Usage
      • Widgets
      • Notebook Image Dependencies
    • Dashboards
      • Dashboards
      • Streamlit
    • Preview
    • User-Defined Functions
    • Task Graphs
    • Serverless SQL
    • Monitor
      • Task Log
      • Task Graph Log
  • Scale
    • Introduction
    • Task Graphs
    • API Usage
  • Structure
    • Why Structure Is Important
    • Arrays
      • Introduction
      • Quickstart
      • Foundation
        • Array Data Model
        • Key Concepts
          • Storage
            • Arrays
            • Dimensions
            • Attributes
            • Cells
            • Domain
            • Tiles
            • Data Layout
            • Compression
            • Encryption
            • Tile Filters
            • Array Schema
            • Schema Evolution
            • Fragments
            • Fragment Metadata
            • Commits
            • Indexing
            • Array Metadata
            • Datetimes
            • Groups
            • Object Stores
          • Compute
            • Writes
            • Deletions
            • Consolidation
            • Vacuuming
            • Time Traveling
            • Reads
            • Query Conditions
            • Aggregates
            • User-Defined Functions
            • Distributed Compute
            • Concurrency
            • Parallelism
        • Storage Format Spec
      • Tutorials
        • Basics
          • Basic Dense Array
          • Basic Sparse Array
          • Array Metadata
          • Compression
          • Encryption
          • Data Layout
          • Tile Filters
          • Datetimes
          • Multiple Attributes
          • Variable-Length Attributes
          • String Dimensions
          • Nullable Attributes
          • Multi-Range Reads
          • Query Conditions
          • Aggregates
          • Deletions
          • Catching Errors
          • Configuration
          • Basic S3 Example
          • Basic TileDB Cloud
          • fromDataFrame
          • Palmer Penguins
        • Advanced
          • Schema Evolution
          • Advanced Writes
            • Write at a Timestamp
            • Get Fragment Info
            • Consolidation
              • Fragments
              • Fragment List
              • Consolidation Plan
              • Commits
              • Fragment Metadata
              • Array Metadata
            • Vacuuming
              • Fragments
              • Commits
              • Fragment Metadata
              • Array Metadata
          • Advanced Reads
            • Get Fragment Info
            • Time Traveling
              • Introduction
              • Fragments
              • Array Metadata
              • Schema Evolution
          • Array Upgrade
          • Backends
            • Amazon S3
            • Azure Blob Storage
            • Google Cloud Storage
            • MinIO
            • Lustre
          • Virtual Filesystem
          • User-Defined Functions
          • Distributed Compute
          • Result Estimation
          • Incomplete Queries
        • Management
          • Array Schema
          • Groups
          • Object Management
        • Performance
          • Summary of Factors
          • Dense vs. Sparse
          • Dimensions vs. Attributes
          • Compression
          • Tiling and Data Layout
          • Tuning Writes
          • Tuning Reads
      • API Reference
    • Tables
      • Introduction
      • Quickstart
      • Foundation
        • Data Model
        • Key Concepts
          • Indexes
          • Columnar Storage
          • Compression
          • Data Manipulation
          • Optimize Tables
          • ACID
          • Serverless SQL
          • SQL Connectors
          • Dataframes
          • CSV Ingestion
      • Tutorials
        • Basics
          • Ingestion with SQL
          • CSV Ingestion
          • Basic S3 Example
          • Running Locally
        • Advanced
          • Scalable Ingestion
          • Scalable Queries
      • API Reference
    • AI & ML
      • Vector Search
        • Introduction
        • Quickstart
        • Foundation
          • Data Model
          • Key Concepts
            • Vector Search
            • Vector Databases
            • Algorithms
            • Distance Metrics
            • Updates
            • Deployment Methods
            • Architecture
            • Distributed Compute
          • Storage Format Spec
        • Tutorials
          • Basics
            • Ingestion & Querying
            • Updates
            • Deletions
            • Basic S3 Example
            • Running Locally
          • Advanced
            • Versioning
            • Time Traveling
            • Consolidation
            • Distributed Compute
            • RAG LLM
            • LLM Memory
            • File Search
            • Image Search
            • Protein Search
          • Performance
        • API Reference
      • ML Models
        • Introduction
        • Quickstart
        • Foundation
          • Basics
          • Storage
          • Cloud Execution
          • Why TileDB for Machine Learning
        • Tutorials
          • Ingestion
            • Data Ingestion
              • Dense Datasets
              • Sparse Datasets
            • ML Model Ingestion
          • Management
            • Array Schema
            • Machine Learning: Groups
            • Time Traveling
    • Life Sciences
      • Single-cell
        • Introduction
        • Quickstart
        • Foundation
          • Data Model
          • Key Concepts
            • Data Structures
            • Use of Apache Arrow
            • Join IDs
            • State Management
            • TileDB Cloud URIs
          • SOMA API Specification
        • Tutorials
          • Data Ingestion
          • Bulk Ingestion Tutorial
          • Data Access
          • Distributed Compute
          • Basic S3 Example
          • Multi-Experiment Queries
          • Appending Data to a SOMA Experiment
          • Add New Measurements
          • SQL Queries
          • Running Locally
          • Shapes in TileDB-SOMA
          • Drug Discovery App
        • Spatial
          • Introduction
          • Foundation
            • Spatial Data Model
            • Data Structures
          • Tutorials
            • Spatial Data Ingestion
            • Access Spatial Data
            • Manage Coordinate Spaces
        • API Reference
      • Population Genomics
        • Introduction
        • Quickstart
        • Foundation
          • Data Model
          • Key Concepts
            • The N+1 Problem
            • Architecture
            • Arrays
            • Ingestion
            • Reads
            • Variant Statistics
            • Annotations
            • User-Defined Functions
            • Tables and SQL
            • Distributed Compute
          • Storage Format Spec
        • Tutorials
          • Basics
            • Basic Ingestion
            • Basic Queries
            • Export to VCF
            • Add New Samples
            • Deleting Samples
            • Basic S3 Example
            • Basic TileDB Cloud
          • Advanced
            • Scalable Ingestion
            • Scalable Queries
            • Query Transforms
            • Handling Large Queries
            • Annotations
              • Finding Annotations
              • Embedded Annotations
              • External Annotations
              • Annotation VCFs
              • Ingesting Annotations
            • Variant Statistics
            • Tables and SQL
            • User-Defined Functions
            • Sample Metadata
            • Split VCF
          • Performance
        • API Reference
          • Command Line Interface
          • Python API
          • Cloud API
      • Biomedical Imaging
        • Introduction
        • Foundation
          • Data Model
          • Key Concepts
            • Arrays
            • Ingestion
            • Reads
            • User Defined Functions
          • Storage Format Spec
        • Quickstart
        • Tutorials
          • Basics
            • Ingestion
            • Read
              • OpenSlide
              • TileDB-Py
          • Advanced
            • Batched Ingestion
            • Chunked Ingestion
            • Machine Learning
              • PyTorch
            • Napari
    • Files
  • API Reference
  • Self-Hosting
    • Installation
    • Upgrades
    • Administrative Tasks
    • Image Customization
      • Customize User-Defined Function Images
      • AWS ECR Container Registry
      • Customize Jupyter Notebook Images
    • Single Sign-On
      • Configure Single Sign-On
      • OpenID Connect
      • Okta SCIM
      • Microsoft Entra
  • Glossary
  1. Structure
  2. Arrays
  3. Tutorials
  4. Basics
  5. Tile Filters

Add Tile Filters to Arrays

arrays
tutorials
python
r
tile filters
Tile filters allow you to compress and encrypt attribute and dimension data for your arrays.
How to run this tutorial

You can run this tutorial in two ways:

  1. Locally on your machine.
  2. On TileDB Cloud.

However, since TileDB Cloud has a free tier, we strongly recommend that you sign up and run everything there, as that requires no installations or deployment.

This tutorial describes how to use tile filters for attributes and dimensions. Two types of unique filters exist in TileDB: compression and encryption. For tutorials on each, visit the Compress Array Data and Encrypt an Array with an AES-256-GCM Key tutorials. This tutorial is very similar to the one on compression. For more information on all the supported tiled filters, visit the Key Concepts: Tile Filters section.

Note

In this context, a tile filter is a transformation (that is, a processing step) applied to the data in a tile before TileDB writes the tile to storage. TileDB applies the filter to each tile individually, and the transformation is reversible.

First, import the necessary libraries, set the array URI (that is, its path, which in this tutorial will be on local storage), and delete any previously created arrays with the same name.

  • Python
  • R
# Import necessary libraries
import os.path
import shutil

import numpy as np
import tiledb

# Set array URI
array_uri = os.path.expanduser("~/tile_filters")

# Delete array if it already exists
if os.path.exists(array_uri):
    shutil.rmtree(array_uri)
# Import necessary libraries
library(tiledb)

# Set array URI
array_uri <- path.expand("~/tile_filters_r")

# Delete array if it already exists
if (file.exists(array_uri)) {
  unlink(array_uri, recursive = TRUE)
}

Next, create some filters as follows.

  • Python
  • R
# Set up some filter lists to pass to dimensions and attributes
# tiledb.FilterList accepts an iterable of zero or more filters
filter_list_1 = tiledb.FilterList(
    [tiledb.PositiveDeltaFilter(window=1000)], chunksize=10000
)
filter_list_2 = tiledb.FilterList([tiledb.BitWidthReductionFilter(window=10)])
# Set up some filter lists to pass to dimensions and attributes
# tiledb_filter_list() accepts a vector of zero or more filters
pd_filter <- tiledb_filter("POSITIVE_DELTA")
pd_filter <- tiledb_filter_set_option(
  pd_filter,
  "POSITIVE_DELTA_MAX_WINDOW",
  1000
)
filter_list_1 <- tiledb_filter_list(pd_filter)
set_max_chunk_size(filter_list_1, 10000)

bwr_filter <- tiledb_filter("BIT_WIDTH_REDUCTION")
bwr_filter <- tiledb_filter_set_option(
  bwr_filter,
  "BIT_WIDTH_MAX_WINDOW",
  10
)
filter_list_2 <- tiledb_filter_list(bwr_filter)

Then create an array and pass the desired filters as arguments in each dimension and attribute.

  • Python
  • R
# Create the two dimensions
# The filter list we created above is passed into the `filters` parameter
d1 = tiledb.Dim(name="d1", domain=(0, 3), tile=2, dtype=np.int32, filters=filter_list_1)
d2 = tiledb.Dim(name="d2", domain=(0, 3), tile=2, dtype=np.int32, filters=filter_list_1)

# Create a domain using the two dimensions
dom = tiledb.Domain(d1, d2)

# Create an attribute
# The filter list we created above is passed into the `filters` parameter
a = tiledb.Attr(name="a", dtype=np.int32, filters=filter_list_2)

# Create the array schema with `sparse=True`
sch = tiledb.ArraySchema(domain=dom, sparse=True, attrs=[a])

# Create the array on disk (it will initially be empty)
tiledb.Array.create(array_uri, sch)
# Create the two dimensions
d1 <- tiledb_dim("d1", c(0L, 3L), 2L, "INT32", filter_list = filter_list_1)
d2 <- tiledb_dim("d2", c(0L, 3L), 2L, "INT32", filter_list = filter_list_1)

# Create a domain using the two dimensions
dom <- tiledb_domain(dims = c(d1, d2))

# Create an attribute
a <- tiledb_attr("a", type = "INT32", filter_list = filter_list_2)

# Create the array schema with `sparse = TRUE`
sch <- tiledb_array_schema(dom, a, sparse = TRUE)

# Create the array on disk (it will initially be empty)
arr <- tiledb_array_create(array_uri, sch)

Inspect the schema of the array to see how TileDB set the filters you passed.

  • Python
  • R
print(tiledb.ArraySchema.load(array_uri))
ArraySchema(
  domain=Domain(*[
    Dim(name='d1', domain=(0, 3), tile=2, dtype='int32', filters=FilterList([PositiveDeltaFilter(window=1000), ])),
    Dim(name='d2', domain=(0, 3), tile=2, dtype='int32', filters=FilterList([PositiveDeltaFilter(window=1000), ])),
  ]),
  attrs=[
    Attr(name='a', dtype='int32', var=False, nullable=False, enum_label=None, filters=FilterList([BitWidthReductionFilter(window=10), ])),
  ],
  cell_order='row-major',
  tile_order='row-major',
  capacity=10000,
  sparse=True,
  allows_duplicates=False,
)
schema(array_uri)
tiledb_array_schema(
    domain=tiledb_domain(c(
        tiledb_dim(name="d1", domain=c(0L,3L), tile=2L, type="INT32", filter_list=tiledb_filter_list(c(tiledb_filter_set_option(tiledb_filter("POSITIVE_DELTA"),"POSITIVE_DELTA_MAX_WINDOW",1000)))),
        tiledb_dim(name="d2", domain=c(0L,3L), tile=2L, type="INT32", filter_list=tiledb_filter_list(c(tiledb_filter_set_option(tiledb_filter("POSITIVE_DELTA"),"POSITIVE_DELTA_MAX_WINDOW",1000))))
    )),
    attrs=c(
        tiledb_attr(name="a", type="INT32", ncells=1, nullable=FALSE, filter_list=tiledb_filter_list(c(tiledb_filter_set_option(tiledb_filter("BIT_WIDTH_REDUCTION"),"BIT_WIDTH_MAX_WINDOW",10))))
    ),
    cell_order="COL_MAJOR", tile_order="COL_MAJOR", capacity=10000, sparse=TRUE, allows_dups=FALSE,
    coords_filter_list=tiledb_filter_list(c(tiledb_filter_set_option(tiledb_filter("ZSTD"),"COMPRESSION_LEVEL",-1))),
    offsets_filter_list=tiledb_filter_list(c(tiledb_filter_set_option(tiledb_filter("ZSTD"),"COMPRESSION_LEVEL",-1))),
    validity_filter_list=tiledb_filter_list(c(tiledb_filter_set_option(tiledb_filter("RLE"),"COMPRESSION_LEVEL",-1)))
)

For convenience, you can pass the same filters to all dimensions by passing them as an argument to the array schema object.

  • Python
  • R
# ... create domain dom
# ... create attribute a
# ... create filter list filter_list_1

# Create the schema setting the coordinates filter list.
# This is applicable only to sparse arrays.
schema = tiledb.ArraySchema(
    domain=dom, sparse=False, attrs=[a], coords_filters=filter_list_1
)
# ... create (or retrieve) array schema sch

# assign filter list to an existing schema
sch <- tiledb_array_schema_set_coords_filter_list(sch, filter_list_1)

# Alternatively create a new schema and set the coordinates filter list
sch <- tiledb_array_schema(dom, a, coords_filter_list = filter_list_1)

You can also set filters for the variable-length attribute and dimension offsets.

  • Python
  • R
# Create the schema setting the offsets filter list

# ... create domain dom
# ... create attribute a
# ... create filter list filter_list_2

# Create the schema setting the offsets filter list
schema = tiledb.ArraySchema(
    domain=dom, sparse=False, attrs=[a], offsets_filters=filter_list_2
)
# ... create (or retrieve) array schema sch

# assign filter list to an existing schema
sch <- tiledb_array_schema_set_offsets_filter_list(sch, filter_list_2)

# Alternatively create a new schema and set the offsets filter list
sch <- tiledb_array_schema(dom, a, offsets_filter_list = filter_list_2)

The same applies to the validity vectors for fixed-length or variable-length attributes.

  • Python
  • R
# Create the schema setting the offsets filter list

# ... create domain dom
# ... create attribute a
# ... create filter list filter_list_3

# Create the schema setting the offsets filter list
schema = tiledb.ArraySchema(
    domain=dom, sparse=False, attrs=[a], validity_filters=filter_list_1
)
# ... create (or retrieve) array schema sch

# assign filter list to an existing schema
sch <- tiledb_array_schema_set_validity_filter_list(sch, filter_list_1)

# Alternatively create a new schema and set the validity filter list
sch <- tiledb_array_schema(dom, a, validity_filter_list = filter_list_1)

Clean up in the end by deleting the array.

  • Python
  • R
# Delete the array
if os.path.exists(array_uri):
    shutil.rmtree(array_uri)
if (file.exists(array_uri)) {
  unlink(array_uri, recursive = TRUE)
}
Data Layout
Datetimes