1. Structure
  2. Arrays
  3. Tutorials
  4. Advanced
  5. Incomplete Queries
  • Home
  • What is TileDB?
  • Get Started
  • Explore Content
  • Accounts
    • Individual Accounts
      • Apply for the Free Tier
      • Profile
        • Overview
        • Cloud Credentials
        • Storage Paths
        • REST API Tokens
        • Credits
    • Organization Admins
      • Create an Organization
      • Profile
        • Overview
        • Members
        • Cloud Credentials
        • Storage Paths
        • Billing
      • API Tokens
    • Organization Members
      • Organization Invitations
      • Profile
        • Overview
        • Members
        • Cloud Credentials
        • Storage Paths
        • Billing
      • API Tokens
  • Catalog
    • Introduction
    • Data
      • Arrays
      • Tables
      • Single-Cell (SOMA)
      • Genomics (VCF)
      • Biomedical Imaging
      • Vector Search
      • Files
    • Code
      • Notebooks
      • Dashboards
      • User-Defined Functions
      • Task Graphs
      • ML Models
    • Groups
    • Marketplace
    • Search
  • Collaborate
    • Introduction
    • Organizations
    • Access Control
      • Introduction
      • Share Assets
      • Asset Permissions
      • Public Assets
    • Logging
    • Marketplace
  • Analyze
    • Introduction
    • Slice Data
    • Multi-Region Redirection
    • Notebooks
      • Launch a Notebook
      • Usage
      • Widgets
      • Notebook Image Dependencies
    • Dashboards
      • Dashboards
      • Streamlit
    • Preview
    • User-Defined Functions
    • Task Graphs
    • Serverless SQL
    • Monitor
      • Task Log
      • Task Graph Log
  • Scale
    • Introduction
    • Task Graphs
    • API Usage
  • Structure
    • Why Structure Is Important
    • Arrays
      • Introduction
      • Quickstart
      • Foundation
        • Array Data Model
        • Key Concepts
          • Storage
            • Arrays
            • Dimensions
            • Attributes
            • Cells
            • Domain
            • Tiles
            • Data Layout
            • Compression
            • Encryption
            • Tile Filters
            • Array Schema
            • Schema Evolution
            • Fragments
            • Fragment Metadata
            • Commits
            • Indexing
            • Array Metadata
            • Datetimes
            • Groups
            • Object Stores
          • Compute
            • Writes
            • Deletions
            • Consolidation
            • Vacuuming
            • Time Traveling
            • Reads
            • Query Conditions
            • Aggregates
            • User-Defined Functions
            • Distributed Compute
            • Concurrency
            • Parallelism
        • Storage Format Spec
      • Tutorials
        • Basics
          • Basic Dense Array
          • Basic Sparse Array
          • Array Metadata
          • Compression
          • Encryption
          • Data Layout
          • Tile Filters
          • Datetimes
          • Multiple Attributes
          • Variable-Length Attributes
          • String Dimensions
          • Nullable Attributes
          • Multi-Range Reads
          • Query Conditions
          • Aggregates
          • Deletions
          • Catching Errors
          • Configuration
          • Basic S3 Example
          • Basic TileDB Cloud
          • fromDataFrame
          • Palmer Penguins
        • Advanced
          • Schema Evolution
          • Advanced Writes
            • Write at a Timestamp
            • Get Fragment Info
            • Consolidation
              • Fragments
              • Fragment List
              • Consolidation Plan
              • Commits
              • Fragment Metadata
              • Array Metadata
            • Vacuuming
              • Fragments
              • Commits
              • Fragment Metadata
              • Array Metadata
          • Advanced Reads
            • Get Fragment Info
            • Time Traveling
              • Introduction
              • Fragments
              • Array Metadata
              • Schema Evolution
          • Array Upgrade
          • Backends
            • Amazon S3
            • Azure Blob Storage
            • Google Cloud Storage
            • MinIO
            • Lustre
          • Virtual Filesystem
          • User-Defined Functions
          • Distributed Compute
          • Result Estimation
          • Incomplete Queries
        • Management
          • Array Schema
          • Groups
          • Object Management
        • Performance
          • Summary of Factors
          • Dense vs. Sparse
          • Dimensions vs. Attributes
          • Compression
          • Tiling and Data Layout
          • Tuning Writes
          • Tuning Reads
      • API Reference
    • Tables
      • Introduction
      • Quickstart
      • Foundation
        • Data Model
        • Key Concepts
          • Indexes
          • Columnar Storage
          • Compression
          • Data Manipulation
          • Optimize Tables
          • ACID
          • Serverless SQL
          • SQL Connectors
          • Dataframes
          • CSV Ingestion
      • Tutorials
        • Basics
          • Ingestion with SQL
          • CSV Ingestion
          • Basic S3 Example
          • Running Locally
        • Advanced
          • Scalable Ingestion
          • Scalable Queries
      • API Reference
    • AI & ML
      • Vector Search
        • Introduction
        • Quickstart
        • Foundation
          • Data Model
          • Key Concepts
            • Vector Search
            • Vector Databases
            • Algorithms
            • Distance Metrics
            • Updates
            • Deployment Methods
            • Architecture
            • Distributed Compute
          • Storage Format Spec
        • Tutorials
          • Basics
            • Ingestion & Querying
            • Updates
            • Deletions
            • Basic S3 Example
            • Running Locally
          • Advanced
            • Versioning
            • Time Traveling
            • Consolidation
            • Distributed Compute
            • RAG LLM
            • LLM Memory
            • File Search
            • Image Search
            • Protein Search
          • Performance
        • API Reference
      • ML Models
        • Introduction
        • Quickstart
        • Foundation
          • Basics
          • Storage
          • Cloud Execution
          • Why TileDB for Machine Learning
        • Tutorials
          • Ingestion
            • Data Ingestion
              • Dense Datasets
              • Sparse Datasets
            • ML Model Ingestion
          • Management
            • Array Schema
            • Machine Learning: Groups
            • Time Traveling
    • Life Sciences
      • Single-cell
        • Introduction
        • Quickstart
        • Foundation
          • Data Model
          • Key Concepts
            • Data Structures
            • Use of Apache Arrow
            • Join IDs
            • State Management
            • TileDB Cloud URIs
          • SOMA API Specification
        • Tutorials
          • Data Ingestion
          • Bulk Ingestion Tutorial
          • Data Access
          • Distributed Compute
          • Basic S3 Example
          • Multi-Experiment Queries
          • Appending Data to a SOMA Experiment
          • Add New Measurements
          • SQL Queries
          • Running Locally
          • Shapes in TileDB-SOMA
          • Drug Discovery App
        • Spatial
          • Introduction
          • Foundation
            • Spatial Data Model
            • Data Structures
          • Tutorials
            • Spatial Data Ingestion
            • Access Spatial Data
            • Manage Coordinate Spaces
        • API Reference
      • Population Genomics
        • Introduction
        • Quickstart
        • Foundation
          • Data Model
          • Key Concepts
            • The N+1 Problem
            • Architecture
            • Arrays
            • Ingestion
            • Reads
            • Variant Statistics
            • Annotations
            • User-Defined Functions
            • Tables and SQL
            • Distributed Compute
          • Storage Format Spec
        • Tutorials
          • Basics
            • Basic Ingestion
            • Basic Queries
            • Export to VCF
            • Add New Samples
            • Deleting Samples
            • Basic S3 Example
            • Basic TileDB Cloud
          • Advanced
            • Scalable Ingestion
            • Scalable Queries
            • Query Transforms
            • Handling Large Queries
            • Annotations
              • Finding Annotations
              • Embedded Annotations
              • External Annotations
              • Annotation VCFs
              • Ingesting Annotations
            • Variant Statistics
            • Tables and SQL
            • User-Defined Functions
            • Sample Metadata
            • Split VCF
          • Performance
        • API Reference
          • Command Line Interface
          • Python API
          • Cloud API
      • Biomedical Imaging
        • Introduction
        • Foundation
          • Data Model
          • Key Concepts
            • Arrays
            • Ingestion
            • Reads
            • User Defined Functions
          • Storage Format Spec
        • Quickstart
        • Tutorials
          • Basics
            • Ingestion
            • Read
              • OpenSlide
              • TileDB-Py
          • Advanced
            • Batched Ingestion
            • Chunked Ingestion
            • Machine Learning
              • PyTorch
            • Napari
    • Files
  • API Reference
  • Self-Hosting
    • Installation
    • Upgrades
    • Administrative Tasks
    • Image Customization
      • Customize User-Defined Function Images
      • AWS ECR Container Registry
      • Customize Jupyter Notebook Images
    • Single Sign-On
      • Configure Single Sign-On
      • OpenID Connect
      • Okta SCIM
      • Microsoft Entra
  • Glossary
  1. Structure
  2. Arrays
  3. Tutorials
  4. Advanced
  5. Incomplete Queries

Incomplete Queries

Learn how TileDB gracefully handles queries larger than the memory set to hold the query result.

This tutorial highlights TileDB’s incomplete queries functionality. For more information on incomplete queries, visit Key Concepts: Reads.

First, import the necessary libraries, set the array URI (that is, its path, which in this tutorial will be on local storage), and delete any previously created arrays with the same name.

  • Python
# Import necessary libraries
import os.path
import shutil

import numpy as np
import tiledb

# Set array URI
array_uri = os.path.expanduser("~/incomplete_queries_python")

# Delete array if it already exists
if os.path.exists(array_uri):
    shutil.rmtree(array_uri)

Next, create the array by specifying its schema. This example uses a sparse array, but the described incomplete query functionality is applicable to any array.

  • Python
# The array will be 100 cells with dimensions "x".
dom = tiledb.Domain(tiledb.Dim(name="x", domain=(0, 99), tile=100, dtype=np.int64))

# The array will be dense with a single string typed attribute "a"
schema = tiledb.ArraySchema(
    domain=dom, sparse=True, attrs=[tiledb.Attr(name="a", dtype=str)]
)

# Create the (empty) array on disk.
tiledb.SparseArray.create(array_uri, schema)

Set a buffer of 800 bytes. This will force the query to return as incomplete.

  • Python
# To force iteration, restrict the buffer sizes
# This setting gives 3 iterations for the example data
init_buffer_bytes = 800
cfg = tiledb.Config(
    {
        "py.init_buffer_bytes": init_buffer_bytes,
        "py.exact_init_buffer_bytes": "true",
    }
)

Now that you created the array, write some data to the array. The data you’ll write is the Latin alphabet with varying repeat lengths.

  • Python
with tiledb.open(array_uri, mode="w") as A:
    extent = A.schema.domain.dim("x").domain
    ncells = extent[1] - extent[0] + 1

    # Data is the Latin alphabet with varying repeat lengths
    data = [chr(i % 26 + 97) * (i % 52) for i in range(ncells)]

    # Coords are the dimension range
    coords = np.arange(extent[0], extent[1] + 1)

    A[coords] = data

Read the results as a dataframe.

  • Python
# in order to force iteration, restrict the buffer sizes
# this setting gives at least 3 iterations for the example data
with tiledb.open(array_uri, config=cfg) as A:
    # iterate over results as a dataframe
    iterable = A.query(return_incomplete=True).df[:]

    for i, result in enumerate(iterable):
        print(f"--- result {i} is a '{type(result)}' with size {len(result)}")
        print(result)
        print("---")

print(f"Query completed after {i} iterations")
--- result 0 is a '<class 'pandas.core.frame.DataFrame'>' with size 40
     x                                        a
0    0                                         
1    1                                        b
2    2                                       cc
3    3                                      ddd
4    4                                     eeee
5    5                                    fffff
6    6                                   gggggg
7    7                                  hhhhhhh
8    8                                 iiiiiiii
9    9                                jjjjjjjjj
10  10                               kkkkkkkkkk
11  11                              lllllllllll
12  12                             mmmmmmmmmmmm
13  13                            nnnnnnnnnnnnn
14  14                           oooooooooooooo
15  15                          ppppppppppppppp
16  16                         qqqqqqqqqqqqqqqq
17  17                        rrrrrrrrrrrrrrrrr
18  18                       ssssssssssssssssss
19  19                      ttttttttttttttttttt
20  20                     uuuuuuuuuuuuuuuuuuuu
21  21                    vvvvvvvvvvvvvvvvvvvvv
22  22                   wwwwwwwwwwwwwwwwwwwwww
23  23                  xxxxxxxxxxxxxxxxxxxxxxx
24  24                 yyyyyyyyyyyyyyyyyyyyyyyy
25  25                zzzzzzzzzzzzzzzzzzzzzzzzz
26  26               aaaaaaaaaaaaaaaaaaaaaaaaaa
27  27              bbbbbbbbbbbbbbbbbbbbbbbbbbb
28  28             cccccccccccccccccccccccccccc
29  29            ddddddddddddddddddddddddddddd
30  30           eeeeeeeeeeeeeeeeeeeeeeeeeeeeee
31  31          fffffffffffffffffffffffffffffff
32  32         gggggggggggggggggggggggggggggggg
33  33        hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
34  34       iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
35  35      jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj
36  36     kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
37  37    lllllllllllllllllllllllllllllllllllll
38  38   mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm
39  39  nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn
---
--- result 1 is a '<class 'pandas.core.frame.DataFrame'>' with size 35
     x                                                  a
0   40           oooooooooooooooooooooooooooooooooooooooo
1   41          ppppppppppppppppppppppppppppppppppppppppp
2   42         qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
3   43        rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr
4   44       ssssssssssssssssssssssssssssssssssssssssssss
5   45      ttttttttttttttttttttttttttttttttttttttttttttt
6   46     uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu
7   47    vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv
8   48   wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww
9   49  xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
10  50  yyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyy...
11  51  zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz...
12  52                                                   
13  53                                                  b
14  54                                                 cc
15  55                                                ddd
16  56                                               eeee
17  57                                              fffff
18  58                                             gggggg
19  59                                            hhhhhhh
20  60                                           iiiiiiii
21  61                                          jjjjjjjjj
22  62                                         kkkkkkkkkk
23  63                                        lllllllllll
24  64                                       mmmmmmmmmmmm
25  65                                      nnnnnnnnnnnnn
26  66                                     oooooooooooooo
27  67                                    ppppppppppppppp
28  68                                   qqqqqqqqqqqqqqqq
29  69                                  rrrrrrrrrrrrrrrrr
30  70                                 ssssssssssssssssss
31  71                                ttttttttttttttttttt
32  72                               uuuuuuuuuuuuuuuuuuuu
33  73                              vvvvvvvvvvvvvvvvvvvvv
34  74                             wwwwwwwwwwwwwwwwwwwwww
---
--- result 2 is a '<class 'pandas.core.frame.DataFrame'>' with size 23
     x                                              a
0   75                        xxxxxxxxxxxxxxxxxxxxxxx
1   76                       yyyyyyyyyyyyyyyyyyyyyyyy
2   77                      zzzzzzzzzzzzzzzzzzzzzzzzz
3   78                     aaaaaaaaaaaaaaaaaaaaaaaaaa
4   79                    bbbbbbbbbbbbbbbbbbbbbbbbbbb
5   80                   cccccccccccccccccccccccccccc
6   81                  ddddddddddddddddddddddddddddd
7   82                 eeeeeeeeeeeeeeeeeeeeeeeeeeeeee
8   83                fffffffffffffffffffffffffffffff
9   84               gggggggggggggggggggggggggggggggg
10  85              hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
11  86             iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
12  87            jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj
13  88           kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
14  89          lllllllllllllllllllllllllllllllllllll
15  90         mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm
16  91        nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn
17  92       oooooooooooooooooooooooooooooooooooooooo
18  93      ppppppppppppppppppppppppppppppppppppppppp
19  94     qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq
20  95    rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr
21  96   ssssssssssssssssssssssssssssssssssssssssssss
22  97  ttttttttttttttttttttttttttttttttttttttttttttt
---
--- result 3 is a '<class 'pandas.core.frame.DataFrame'>' with size 2
    x                                                a
0  98   uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu
1  99  vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv
---
Query completed after 3 iterations

You can also read the results as an OrderedDict.

  • Python
# you can also iterate results as an OrderedDict
with tiledb.open(array_uri, config=cfg) as A:
    iterable = A.query(return_incomplete=True).multi_index[:]

    for i, result in enumerate(iterable):
        print(f"--- result {i} is a '{type(result)}' with size {len(result)}")
        print(result)
        print("---")

print(f"Query completed after {i} iterations")
--- result 0 is a '<class 'collections.OrderedDict'>' with size 2
OrderedDict([('x', array([ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15, 16,
       17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33,
       34, 35, 36, 37, 38, 39])), ('a', array(['', 'b', 'cc', 'ddd', 'eeee', 'fffff', 'gggggg', 'hhhhhhh',
       'iiiiiiii', 'jjjjjjjjj', 'kkkkkkkkkk', 'lllllllllll',
       'mmmmmmmmmmmm', 'nnnnnnnnnnnnn', 'oooooooooooooo',
       'ppppppppppppppp', 'qqqqqqqqqqqqqqqq', 'rrrrrrrrrrrrrrrrr',
       'ssssssssssssssssss', 'ttttttttttttttttttt',
       'uuuuuuuuuuuuuuuuuuuu', 'vvvvvvvvvvvvvvvvvvvvv',
       'wwwwwwwwwwwwwwwwwwwwww', 'xxxxxxxxxxxxxxxxxxxxxxx',
       'yyyyyyyyyyyyyyyyyyyyyyyy', 'zzzzzzzzzzzzzzzzzzzzzzzzz',
       'aaaaaaaaaaaaaaaaaaaaaaaaaa', 'bbbbbbbbbbbbbbbbbbbbbbbbbbb',
       'cccccccccccccccccccccccccccc', 'ddddddddddddddddddddddddddddd',
       'eeeeeeeeeeeeeeeeeeeeeeeeeeeeee',
       'fffffffffffffffffffffffffffffff',
       'gggggggggggggggggggggggggggggggg',
       'hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh',
       'iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii',
       'jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj',
       'kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk',
       'lllllllllllllllllllllllllllllllllllll',
       'mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm',
       'nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn'], dtype=object))])
---
--- result 1 is a '<class 'collections.OrderedDict'>' with size 2
OrderedDict([('x', array([40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56,
       57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73,
       74])), ('a', array(['oooooooooooooooooooooooooooooooooooooooo',
       'ppppppppppppppppppppppppppppppppppppppppp',
       'qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq',
       'rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr',
       'ssssssssssssssssssssssssssssssssssssssssssss',
       'ttttttttttttttttttttttttttttttttttttttttttttt',
       'uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu',
       'vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv',
       'wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww',
       'xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx',
       'yyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyy',
       'zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz', '', 'b',
       'cc', 'ddd', 'eeee', 'fffff', 'gggggg', 'hhhhhhh', 'iiiiiiii',
       'jjjjjjjjj', 'kkkkkkkkkk', 'lllllllllll', 'mmmmmmmmmmmm',
       'nnnnnnnnnnnnn', 'oooooooooooooo', 'ppppppppppppppp',
       'qqqqqqqqqqqqqqqq', 'rrrrrrrrrrrrrrrrr', 'ssssssssssssssssss',
       'ttttttttttttttttttt', 'uuuuuuuuuuuuuuuuuuuu',
       'vvvvvvvvvvvvvvvvvvvvv', 'wwwwwwwwwwwwwwwwwwwwww'], dtype=object))])
---
--- result 2 is a '<class 'collections.OrderedDict'>' with size 2
OrderedDict([('x', array([75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91,
       92, 93, 94, 95, 96, 97])), ('a', array(['xxxxxxxxxxxxxxxxxxxxxxx', 'yyyyyyyyyyyyyyyyyyyyyyyy',
       'zzzzzzzzzzzzzzzzzzzzzzzzz', 'aaaaaaaaaaaaaaaaaaaaaaaaaa',
       'bbbbbbbbbbbbbbbbbbbbbbbbbbb', 'cccccccccccccccccccccccccccc',
       'ddddddddddddddddddddddddddddd', 'eeeeeeeeeeeeeeeeeeeeeeeeeeeeee',
       'fffffffffffffffffffffffffffffff',
       'gggggggggggggggggggggggggggggggg',
       'hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh',
       'iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii',
       'jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj',
       'kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk',
       'lllllllllllllllllllllllllllllllllllll',
       'mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm',
       'nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn',
       'oooooooooooooooooooooooooooooooooooooooo',
       'ppppppppppppppppppppppppppppppppppppppppp',
       'qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq',
       'rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr',
       'ssssssssssssssssssssssssssssssssssssssssssss',
       'ttttttttttttttttttttttttttttttttttttttttttttt'], dtype=object))])
---
--- result 3 is a '<class 'collections.OrderedDict'>' with size 2
OrderedDict([('x', array([98, 99])), ('a', array(['uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu',
       'vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv'], dtype=object))])
---
Query completed after 3 iterations

Clean up in the end by deleting the array.

  • Python
# Delete the array
if os.path.exists(array_uri):
    shutil.rmtree(array_uri)
Result Estimation
Management