1. Structure
  2. Life Sciences
  3. Population Genomics
  4. Tutorials
  5. Advanced
  6. Annotations
  7. Annotation VCFs
  • Home
  • What is TileDB?
  • Get Started
  • Explore Content
  • Accounts
    • Individual Accounts
      • Apply for the Free Tier
      • Profile
        • Overview
        • Cloud Credentials
        • Storage Paths
        • REST API Tokens
        • Credits
    • Organization Admins
      • Create an Organization
      • Profile
        • Overview
        • Members
        • Cloud Credentials
        • Storage Paths
        • Billing
      • API Tokens
    • Organization Members
      • Organization Invitations
      • Profile
        • Overview
        • Members
        • Cloud Credentials
        • Storage Paths
        • Billing
      • API Tokens
  • Catalog
    • Introduction
    • Data
      • Arrays
      • Tables
      • Single-Cell (SOMA)
      • Genomics (VCF)
      • Biomedical Imaging
      • Vector Search
      • Files
    • Code
      • Notebooks
      • Dashboards
      • User-Defined Functions
      • Task Graphs
      • ML Models
    • Groups
    • Marketplace
    • Search
  • Collaborate
    • Introduction
    • Organizations
    • Access Control
      • Introduction
      • Share Assets
      • Asset Permissions
      • Public Assets
    • Logging
    • Marketplace
  • Analyze
    • Introduction
    • Slice Data
    • Multi-Region Redirection
    • Notebooks
      • Launch a Notebook
      • Usage
      • Widgets
      • Notebook Image Dependencies
    • Dashboards
      • Dashboards
      • Streamlit
    • Preview
    • User-Defined Functions
    • Task Graphs
    • Serverless SQL
    • Monitor
      • Task Log
      • Task Graph Log
  • Scale
    • Introduction
    • Task Graphs
    • API Usage
  • Structure
    • Why Structure Is Important
    • Arrays
      • Introduction
      • Quickstart
      • Foundation
        • Array Data Model
        • Key Concepts
          • Storage
            • Arrays
            • Dimensions
            • Attributes
            • Cells
            • Domain
            • Tiles
            • Data Layout
            • Compression
            • Encryption
            • Tile Filters
            • Array Schema
            • Schema Evolution
            • Fragments
            • Fragment Metadata
            • Commits
            • Indexing
            • Array Metadata
            • Datetimes
            • Groups
            • Object Stores
          • Compute
            • Writes
            • Deletions
            • Consolidation
            • Vacuuming
            • Time Traveling
            • Reads
            • Query Conditions
            • Aggregates
            • User-Defined Functions
            • Distributed Compute
            • Concurrency
            • Parallelism
        • Storage Format Spec
      • Tutorials
        • Basics
          • Basic Dense Array
          • Basic Sparse Array
          • Array Metadata
          • Compression
          • Encryption
          • Data Layout
          • Tile Filters
          • Datetimes
          • Multiple Attributes
          • Variable-Length Attributes
          • String Dimensions
          • Nullable Attributes
          • Multi-Range Reads
          • Query Conditions
          • Aggregates
          • Deletions
          • Catching Errors
          • Configuration
          • Basic S3 Example
          • Basic TileDB Cloud
          • fromDataFrame
          • Palmer Penguins
        • Advanced
          • Schema Evolution
          • Advanced Writes
            • Write at a Timestamp
            • Get Fragment Info
            • Consolidation
              • Fragments
              • Fragment List
              • Consolidation Plan
              • Commits
              • Fragment Metadata
              • Array Metadata
            • Vacuuming
              • Fragments
              • Commits
              • Fragment Metadata
              • Array Metadata
          • Advanced Reads
            • Get Fragment Info
            • Time Traveling
              • Introduction
              • Fragments
              • Array Metadata
              • Schema Evolution
          • Array Upgrade
          • Backends
            • Amazon S3
            • Azure Blob Storage
            • Google Cloud Storage
            • MinIO
            • Lustre
          • Virtual Filesystem
          • User-Defined Functions
          • Distributed Compute
          • Result Estimation
          • Incomplete Queries
        • Management
          • Array Schema
          • Groups
          • Object Management
        • Performance
          • Summary of Factors
          • Dense vs. Sparse
          • Dimensions vs. Attributes
          • Compression
          • Tiling and Data Layout
          • Tuning Writes
          • Tuning Reads
      • API Reference
    • Tables
      • Introduction
      • Quickstart
      • Foundation
        • Data Model
        • Key Concepts
          • Indexes
          • Columnar Storage
          • Compression
          • Data Manipulation
          • Optimize Tables
          • ACID
          • Serverless SQL
          • SQL Connectors
          • Dataframes
          • CSV Ingestion
      • Tutorials
        • Basics
          • Ingestion with SQL
          • CSV Ingestion
          • Basic S3 Example
          • Running Locally
        • Advanced
          • Scalable Ingestion
          • Scalable Queries
      • API Reference
    • AI & ML
      • Vector Search
        • Introduction
        • Quickstart
        • Foundation
          • Data Model
          • Key Concepts
            • Vector Search
            • Vector Databases
            • Algorithms
            • Distance Metrics
            • Updates
            • Deployment Methods
            • Architecture
            • Distributed Compute
          • Storage Format Spec
        • Tutorials
          • Basics
            • Ingestion & Querying
            • Updates
            • Deletions
            • Basic S3 Example
            • Running Locally
          • Advanced
            • Versioning
            • Time Traveling
            • Consolidation
            • Distributed Compute
            • RAG LLM
            • LLM Memory
            • File Search
            • Image Search
            • Protein Search
          • Performance
        • API Reference
      • ML Models
        • Introduction
        • Quickstart
        • Foundation
          • Basics
          • Storage
          • Cloud Execution
          • Why TileDB for Machine Learning
        • Tutorials
          • Ingestion
            • Data Ingestion
              • Dense Datasets
              • Sparse Datasets
            • ML Model Ingestion
          • Management
            • Array Schema
            • Machine Learning: Groups
            • Time Traveling
    • Life Sciences
      • Single-cell
        • Introduction
        • Quickstart
        • Foundation
          • Data Model
          • Key Concepts
            • Data Structures
            • Use of Apache Arrow
            • Join IDs
            • State Management
            • TileDB Cloud URIs
          • SOMA API Specification
        • Tutorials
          • Data Ingestion
          • Bulk Ingestion Tutorial
          • Data Access
          • Distributed Compute
          • Basic S3 Example
          • Multi-Experiment Queries
          • Appending Data to a SOMA Experiment
          • Add New Measurements
          • SQL Queries
          • Running Locally
          • Shapes in TileDB-SOMA
          • Drug Discovery App
        • Spatial
          • Introduction
          • Foundation
            • Spatial Data Model
            • Data Structures
          • Tutorials
            • Spatial Data Ingestion
            • Access Spatial Data
            • Manage Coordinate Spaces
        • API Reference
      • Population Genomics
        • Introduction
        • Quickstart
        • Foundation
          • Data Model
          • Key Concepts
            • The N+1 Problem
            • Architecture
            • Arrays
            • Ingestion
            • Reads
            • Variant Statistics
            • Annotations
            • User-Defined Functions
            • Tables and SQL
            • Distributed Compute
          • Storage Format Spec
        • Tutorials
          • Basics
            • Basic Ingestion
            • Basic Queries
            • Export to VCF
            • Add New Samples
            • Deleting Samples
            • Basic S3 Example
            • Basic TileDB Cloud
          • Advanced
            • Scalable Ingestion
            • Scalable Queries
            • Query Transforms
            • Handling Large Queries
            • Annotations
              • Finding Annotations
              • Embedded Annotations
              • External Annotations
              • Annotation VCFs
              • Ingesting Annotations
            • Variant Statistics
            • Tables and SQL
            • User-Defined Functions
            • Sample Metadata
            • Split VCF
          • Performance
        • API Reference
          • Command Line Interface
          • Python API
          • Cloud API
      • Biomedical Imaging
        • Introduction
        • Foundation
          • Data Model
          • Key Concepts
            • Arrays
            • Ingestion
            • Reads
            • User Defined Functions
          • Storage Format Spec
        • Quickstart
        • Tutorials
          • Basics
            • Ingestion
            • Read
              • OpenSlide
              • TileDB-Py
          • Advanced
            • Batched Ingestion
            • Chunked Ingestion
            • Machine Learning
              • PyTorch
            • Napari
    • Files
  • API Reference
  • Self-Hosting
    • Installation
    • Upgrades
    • Administrative Tasks
    • Image Customization
      • Customize User-Defined Function Images
      • AWS ECR Container Registry
      • Customize Jupyter Notebook Images
    • Single Sign-On
      • Configure Single Sign-On
      • OpenID Connect
      • Okta SCIM
      • Microsoft Entra
  • Glossary
  1. Structure
  2. Life Sciences
  3. Population Genomics
  4. Tutorials
  5. Advanced
  6. Annotations
  7. Annotation VCFs

Annotation VCFs

life sciences
genomics (vcf)
tutorials
annotation
Learn about querying sampleless variant-only TileDB-VCF datasets.
How to run this tutorial

You can run this tutorial only on TileDB Cloud. However, TileDB Cloud has a free tier. We strongly recommend that you sign up and run everything there, as that requires no installations or deployment.

VCF can serve as a delivery medium for variant annotations, even if no samples are present. TileDB-VCF can ingest these sampleless, variant-only VCFs. This tutorial shows how to extract this annotation information from VCF files and ingest it into separate TileDB arrays on TileDB Cloud, which can then be combined to generate annotations for other VCF datasets.

Import the necessary libraries and set the URIs that will be used in this tutorial. If you are running this from a local notebook, visit the Tutorials: Basic TileDB Cloud for more information on how to set your TileDB Cloud credentials in a configuration object (this step can be omitted inside a TileDB Cloud notebook).

  • Python
import os

import numpy as np
import tiledb
import tiledb.cloud
import tiledb.cloud.vcf
import tiledb.cloud.vcf.vcf_toolbox as vtb
import tiledbvcf

# Get your credentials
tiledb_token = os.environ["TILEDB_REST_TOKEN"]
# or use your username and password (not recommended)
# tiledb_username = os.environ["TILEDB_USERNAME"]
# tiledb_password = os.environ["TILEDB_PASSWORD"]


# Public URI datasets to be used in this tutorial
gnomad_uri = "tiledb://TileDB-Inc/gnomad-4_0-include-nopass"
vcf_uri = "tiledb://TileDB-Inc/vcf-1kg-dragen-v376"

# Log into TileDB Cloud
tiledb.cloud.login(token=tiledb_token)
# or use your username and password (not recommended)
# tiledb.cloud.login(username=tiledb_username, password=tiledb_password)

You will use gnomAD, which is distributed in this manner, and can be used to annotate variant datasets for measures of allele frequency.

Start by specifying the gnomAD dataset and region of interest. Then, query the gnomAD dataset, and select the allele frequency INFO column.

  • Python
regions = ["chr19:44905804-44909392"]
gnomad_arrow = tiledb.cloud.vcf.read(
    dataset_uri=gnomad_uri,
    regions=regions,
    samples="",
    attrs=["contig", "pos_start", "alleles", "info_AF"],
)
gnomad_df = gnomad_arrow.to_pandas()
gnomad_df.head()
contig pos_start alleles info_AF
0 chr19 44905804 [C, T] [6.56866e-06]
1 chr19 44905805 [C, T] [6.57531e-06]
2 chr19 44905808 [A, T] [0.0]
3 chr19 44905810 [C, T] [6.57609e-06]
4 chr19 44905813 [A, G] [6.58077e-06]

Clean the gnomAD result DataFrame. Split the alleles into ref and alt columns, and cast the columns to the correct data types.

  • Python
gnomad_df = (
    gnomad_df.assign(
        ref=lambda df: df["alleles"].apply(lambda alleles: alleles[0]),
        alt=lambda df: df["alleles"].apply(lambda alleles: alleles[1:]),
    )
    .dropna(subset=["alt"])
    .explode(["alt", "info_AF"])
    .assign(
        ref=lambda df: df["ref"].astype(str),
        alt=lambda df: df["alt"].apply(lambda x: str(x)),
        info_AF=lambda df: df["info_AF"].astype(np.float32),
    )
    .drop(columns=["alleles"])
    .set_index(["contig", "pos_start"])
)
gnomad_df
info_AF ref alt
contig pos_start
chr19 44905804 0.000007 C T
44905805 0.000007 C T
44905808 0.000000 A T
44905810 0.000007 C T
44905813 0.000007 A G
... ... ... ...
44909370 0.000007 TAAAGATTCACC T
44909377 0.000007 T A
44909384 0.000007 G A
44909391 0.000007 G A
44909392 0.000007 C T

907 rows × 3 columns

Create a TileDB array for the gnomAD results.

  • Python
# Create array URI
user_profile = tiledb.cloud.user_profile()
username = user_profile.username
array_uri = f"tiledb://{user_profile.username}/{user_profile.default_s3_path.rstrip('/')}/gnomad_apoe"

# Ingest dataframe into array. This will also register the array to TileDB Cloud
tiledb.from_pandas(
    dataframe=gnomad_df,
    uri=array_uri,
    column_types={
        "contig": "str",
        "pos_start": "int32",
        "ref": "str",
        "alt": "str",
        "info_AF": np.float32,
    },
)

Now that you created the array, you can inspect it.

  • Python
with tiledb.open(array_uri, ctx=tiledb.cloud.Ctx()) as A:
    df = A.df[:]
df
info_AF ref alt
contig pos_start
chr19 44905804 0.000007 C T
44905805 0.000007 C T
44905808 0.000000 A T
44905810 0.000007 C T
44905813 0.000007 A G
... ... ... ...
44909370 0.000007 TAAAGATTCACC T
44909377 0.000007 T A
44909384 0.000007 G A
44909391 0.000007 G A
44909392 0.000007 C T

907 rows × 3 columns

Perform a TileDB Cloud distributed query and annotate using the newly created gnomAD array. Note the variants have now been annotated with their global allele frequency.

  • Python
# Get the first 100 samples
vcf_df = tiledbvcf.Dataset(vcf_uri, tiledb_config=tiledb.cloud.Config())
samples = vcf_df.samples()[:100]

# Perform the query
df = tiledb.cloud.vcf.read(
    dataset_uri=vcf_uri,
    regions=regions,
    samples=samples,
    transform_result=vtb.annotate(ann_uri=array_uri, ann_regions=regions),
).to_pandas()
df
sample_name contig pos_start fmt_GT ref alt info_AF
0 HG00096 chr19 44905910 [1, 1] C G 0.688353
1 HG00097 chr19 44905910 [1, 1] C G 0.688353
2 HG00101 chr19 44905910 [1, 1] C G 0.688353
3 HG00102 chr19 44905910 [0, 1] C G 0.688353
4 HG00103 chr19 44905910 [1, 1] C G 0.688353
... ... ... ... ... ... ... ...
43 HG00262 chr19 44908684 [0, 1] T C 0.157359
44 HG00239 chr19 44908822 [0, 1] C T 0.077837
45 HG00242 chr19 44908822 [0, 1] C T 0.077837
46 HG00254 chr19 44908822 [0, 1] C T 0.077837
47 HG00251 chr19 44908947 [0, 1] C T 0.000888

236 rows × 7 columns

External Annotations
Ingesting Annotations