1. Structure
  2. Life Sciences
  3. Population Genomics
  4. Tutorials
  5. Advanced
  6. Tables and SQL
  • Home
  • What is TileDB?
  • Get Started
  • Explore Content
  • Accounts
    • Individual Accounts
      • Apply for the Free Tier
      • Profile
        • Overview
        • Cloud Credentials
        • Storage Paths
        • REST API Tokens
        • Credits
    • Organization Admins
      • Create an Organization
      • Profile
        • Overview
        • Members
        • Cloud Credentials
        • Storage Paths
        • Billing
      • API Tokens
    • Organization Members
      • Organization Invitations
      • Profile
        • Overview
        • Members
        • Cloud Credentials
        • Storage Paths
        • Billing
      • API Tokens
  • Catalog
    • Introduction
    • Data
      • Arrays
      • Tables
      • Single-Cell (SOMA)
      • Genomics (VCF)
      • Biomedical Imaging
      • Vector Search
      • Files
    • Code
      • Notebooks
      • Dashboards
      • User-Defined Functions
      • Task Graphs
      • ML Models
    • Groups
    • Marketplace
    • Search
  • Collaborate
    • Introduction
    • Organizations
    • Access Control
      • Introduction
      • Share Assets
      • Asset Permissions
      • Public Assets
    • Logging
    • Marketplace
  • Analyze
    • Introduction
    • Slice Data
    • Multi-Region Redirection
    • Notebooks
      • Launch a Notebook
      • Usage
      • Widgets
      • Notebook Image Dependencies
    • Dashboards
      • Dashboards
      • Streamlit
    • Preview
    • User-Defined Functions
    • Task Graphs
    • Serverless SQL
    • Monitor
      • Task Log
      • Task Graph Log
  • Scale
    • Introduction
    • Task Graphs
    • API Usage
  • Structure
    • Why Structure Is Important
    • Arrays
      • Introduction
      • Quickstart
      • Foundation
        • Array Data Model
        • Key Concepts
          • Storage
            • Arrays
            • Dimensions
            • Attributes
            • Cells
            • Domain
            • Tiles
            • Data Layout
            • Compression
            • Encryption
            • Tile Filters
            • Array Schema
            • Schema Evolution
            • Fragments
            • Fragment Metadata
            • Commits
            • Indexing
            • Array Metadata
            • Datetimes
            • Groups
            • Object Stores
          • Compute
            • Writes
            • Deletions
            • Consolidation
            • Vacuuming
            • Time Traveling
            • Reads
            • Query Conditions
            • Aggregates
            • User-Defined Functions
            • Distributed Compute
            • Concurrency
            • Parallelism
        • Storage Format Spec
      • Tutorials
        • Basics
          • Basic Dense Array
          • Basic Sparse Array
          • Array Metadata
          • Compression
          • Encryption
          • Data Layout
          • Tile Filters
          • Datetimes
          • Multiple Attributes
          • Variable-Length Attributes
          • String Dimensions
          • Nullable Attributes
          • Multi-Range Reads
          • Query Conditions
          • Aggregates
          • Deletions
          • Catching Errors
          • Configuration
          • Basic S3 Example
          • Basic TileDB Cloud
          • fromDataFrame
          • Palmer Penguins
        • Advanced
          • Schema Evolution
          • Advanced Writes
            • Write at a Timestamp
            • Get Fragment Info
            • Consolidation
              • Fragments
              • Fragment List
              • Consolidation Plan
              • Commits
              • Fragment Metadata
              • Array Metadata
            • Vacuuming
              • Fragments
              • Commits
              • Fragment Metadata
              • Array Metadata
          • Advanced Reads
            • Get Fragment Info
            • Time Traveling
              • Introduction
              • Fragments
              • Array Metadata
              • Schema Evolution
          • Array Upgrade
          • Backends
            • Amazon S3
            • Azure Blob Storage
            • Google Cloud Storage
            • MinIO
            • Lustre
          • Virtual Filesystem
          • User-Defined Functions
          • Distributed Compute
          • Result Estimation
          • Incomplete Queries
        • Management
          • Array Schema
          • Groups
          • Object Management
        • Performance
          • Summary of Factors
          • Dense vs. Sparse
          • Dimensions vs. Attributes
          • Compression
          • Tiling and Data Layout
          • Tuning Writes
          • Tuning Reads
      • API Reference
    • Tables
      • Introduction
      • Quickstart
      • Foundation
        • Data Model
        • Key Concepts
          • Indexes
          • Columnar Storage
          • Compression
          • Data Manipulation
          • Optimize Tables
          • ACID
          • Serverless SQL
          • SQL Connectors
          • Dataframes
          • CSV Ingestion
      • Tutorials
        • Basics
          • Ingestion with SQL
          • CSV Ingestion
          • Basic S3 Example
          • Running Locally
        • Advanced
          • Scalable Ingestion
          • Scalable Queries
      • API Reference
    • AI & ML
      • Vector Search
        • Introduction
        • Quickstart
        • Foundation
          • Data Model
          • Key Concepts
            • Vector Search
            • Vector Databases
            • Algorithms
            • Distance Metrics
            • Updates
            • Deployment Methods
            • Architecture
            • Distributed Compute
          • Storage Format Spec
        • Tutorials
          • Basics
            • Ingestion & Querying
            • Updates
            • Deletions
            • Basic S3 Example
            • Running Locally
          • Advanced
            • Versioning
            • Time Traveling
            • Consolidation
            • Distributed Compute
            • RAG LLM
            • LLM Memory
            • File Search
            • Image Search
            • Protein Search
          • Performance
        • API Reference
      • ML Models
        • Introduction
        • Quickstart
        • Foundation
          • Basics
          • Storage
          • Cloud Execution
          • Why TileDB for Machine Learning
        • Tutorials
          • Ingestion
            • Data Ingestion
              • Dense Datasets
              • Sparse Datasets
            • ML Model Ingestion
          • Management
            • Array Schema
            • Machine Learning: Groups
            • Time Traveling
    • Life Sciences
      • Single-cell
        • Introduction
        • Quickstart
        • Foundation
          • Data Model
          • Key Concepts
            • Data Structures
            • Use of Apache Arrow
            • Join IDs
            • State Management
            • TileDB Cloud URIs
          • SOMA API Specification
        • Tutorials
          • Data Ingestion
          • Bulk Ingestion Tutorial
          • Data Access
          • Distributed Compute
          • Basic S3 Example
          • Multi-Experiment Queries
          • Appending Data to a SOMA Experiment
          • Add New Measurements
          • SQL Queries
          • Running Locally
          • Shapes in TileDB-SOMA
          • Drug Discovery App
        • Spatial
          • Introduction
          • Foundation
            • Spatial Data Model
            • Data Structures
          • Tutorials
            • Spatial Data Ingestion
            • Access Spatial Data
            • Manage Coordinate Spaces
        • API Reference
      • Population Genomics
        • Introduction
        • Quickstart
        • Foundation
          • Data Model
          • Key Concepts
            • The N+1 Problem
            • Architecture
            • Arrays
            • Ingestion
            • Reads
            • Variant Statistics
            • Annotations
            • User-Defined Functions
            • Tables and SQL
            • Distributed Compute
          • Storage Format Spec
        • Tutorials
          • Basics
            • Basic Ingestion
            • Basic Queries
            • Export to VCF
            • Add New Samples
            • Deleting Samples
            • Basic S3 Example
            • Basic TileDB Cloud
          • Advanced
            • Scalable Ingestion
            • Scalable Queries
            • Query Transforms
            • Handling Large Queries
            • Annotations
              • Finding Annotations
              • Embedded Annotations
              • External Annotations
              • Annotation VCFs
              • Ingesting Annotations
            • Variant Statistics
            • Tables and SQL
            • User-Defined Functions
            • Sample Metadata
            • Split VCF
          • Performance
        • API Reference
          • Command Line Interface
          • Python API
          • Cloud API
      • Biomedical Imaging
        • Introduction
        • Foundation
          • Data Model
          • Key Concepts
            • Arrays
            • Ingestion
            • Reads
            • User Defined Functions
          • Storage Format Spec
        • Quickstart
        • Tutorials
          • Basics
            • Ingestion
            • Read
              • OpenSlide
              • TileDB-Py
          • Advanced
            • Batched Ingestion
            • Chunked Ingestion
            • Machine Learning
              • PyTorch
            • Napari
    • Files
  • API Reference
  • Self-Hosting
    • Installation
    • Upgrades
    • Administrative Tasks
    • Image Customization
      • Customize User-Defined Function Images
      • AWS ECR Container Registry
      • Customize Jupyter Notebook Images
    • Single Sign-On
      • Configure Single Sign-On
      • OpenID Connect
      • Okta SCIM
      • Microsoft Entra
  • Glossary
  1. Structure
  2. Life Sciences
  3. Population Genomics
  4. Tutorials
  5. Advanced
  6. Tables and SQL

Tables and SQL Tutorial

life sciences
genomics (vcf)
tutorials
tables
sql
Learn how to query tabular variant data and leverage the power of SQL.
How to run this tutorial

You can run this tutorial only on TileDB Cloud. However, TileDB Cloud has a free tier. We strongly recommend that you sign up and run everything there, as that requires no installations or deployment.

Along with the TileDB-VCF datasets (which aren’t exactly tabular), TileDB creates other important, associated tabular datasets, such as sample metadata, variant annotation, and gene models stored as generic TileDB arrays. You can access this data in a variety of ways, including the raw array programmatic APIs, but also Python pandas-like dataframe operators and, most importantly, SQL.

Although you can run this tutorial locally from your laptop, you need to have a TileDB Cloud account, as the majority of the operations leverage functionality provided only by TileDB Cloud. Visit the Tutorials: Basic TileDB Cloud section for more information on how to use TileDB Cloud.

In this tutorial, you will:

  • Learn the use of a basic pandas-like dataframe operator to query a table (represented as a TileDB array).
  • Filter samples for a specific demographic using SQL.
  • Retrieve exon intervals for a specific gene symbol using SQL.
  • Query a large VCF dataset to retrieve variants for samples within your cohort that overlap DRD2’s coding regions.

For more information on tabular data, visit the Key Concepts: Tables and SQL section.

First, import the necessary libraries, log into TileDB Cloud and set up the URIs of the datasets used throughout the tutorial. You can skip logging in if you run this tutorial in a notebook server inside TileDB Cloud.

  • Python
import os

import tiledb
import tiledb.cloud
import tiledb.cloud.sql
import tiledb.cloud.vcf
from tiledb.cloud.compute import DelayedSQL

# Get your credentials
tiledb_token = os.environ["TILEDB_REST_TOKEN"]
# or use your username and password (not recommended)
# tiledb_username = os.environ["TILEDB_USERNAME"]
# tiledb_password = os.environ["TILEDB_PASSWORD"]

# VCF data from the DRAGEN 1KG samples
vcf_array = "tiledb://TileDB-Inc/vcf-1kg-dragen-v376"

# Phenotypes for the 1KG samples
sample_array = "tiledb://TileDB-Inc/vcf-1kg-sample-metadata"

# Ensembl gene/exon annotation
gene_array = "tiledb://TileDB-Inc/ensemblgene_sparse"
exon_array = "tiledb://TileDB-Inc/ensemblexon_sparse"

# Log into TileDB Cloud
tiledb.cloud.login(token=tiledb_token)
# or use your username and password (not recommended)
# tiledb.cloud.login(username=tiledb_username, password=tiledb_password)

You can get the contents of gene_array into a pandas dataframe using the TileDB df operator.

  • Python
with tiledb.open(gene_array, ctx=tiledb.cloud.Ctx()) as A:
    df = A.df[:]
df
chrom pos_start pos_end width strand gene_source gene_biotype
gene_name gene_id
5S_rRNA ENSG00000201285 X 147089620 147089735 116 - ensembl rRNA
ENSG00000212595 X 150194767 150194878 112 - ensembl rRNA
ENSG00000238602 GL000192.1 415332 415454 123 + ensembl rRNA
ENSG00000238762 GL000228.1 22673 22791 119 + ensembl rRNA
ENSG00000239156 GL000228.1 20113 20230 118 + ensembl rRNA
... ... ... ... ... ... ... ... ...
snoZ6 ENSG00000266692 21 45857004 45857058 55 + ensembl snoRNA
snosnR60_Z15 ENSG00000201853 2 125886409 125886490 82 + ensembl snoRNA
ENSG00000252849 7 131600994 131601081 88 - ensembl snoRNA
snosnR66 ENSG00000212397 11 112473077 112473175 99 - ensembl snoRNA
yR211F11.2 ENSG00000213076 6 159342303 159343182 880 - havana pseudogene

63677 rows × 7 columns

This array happens to be indexed on gene_name. Thus, you can slice only the entry for a specific gene as follows:

  • Python
gene_name = "KCNQ2"

with tiledb.open(gene_array, ctx=tiledb.cloud.Ctx()) as A:
    df = A.df[gene_name, :]
df
chrom pos_start pos_end width strand gene_source gene_biotype
gene_name gene_id
KCNQ2 ENSG00000075043 20 62037542 62103993 66452 - ensembl_havana protein_coding

You can perform the same query using SQL as follows:

  • Python
tiledb.cloud.sql.exec(
    query=f"select * from `{gene_array}` where `gene_name` = '{gene_name}'"
)
gene_name gene_id gene_biotype gene_source strand width pos_end pos_start chrom
0 KCNQ2 ENSG00000075043 protein_coding ensembl_havana - 66452 62103993 62037542 20

The rest of this tutorial focuses on the assigned Ensembl gene ID, which you’ll need to query the array containing Ensembl’s exon annotations, in order to obtain the associated coding regions.

You can accomplish this by defining two delayed SQL queries to retrieve the samples and regions of interest, and passing their result into a distributed VCF query that will perform those two SQL queries in parallel. The SQL queries are called “delayed”, because the are not computed when they are defined, but their computation is delayed until the distributed VCF query is performed.

First, define a SQL query to retrieve the regions.

  • Python
ensembl_query = f"""
  SELECT
    concat("chr", ensemblexon.chrom, ":", ensemblexon.pos_start, "-", ensemblexon.pos_end) region
  FROM `{gene_array}` ensemblgene
  LEFT JOIN `{exon_array}` ensemblexon ON ensemblexon.gene_id = ensemblgene.gene_id
  WHERE ensemblgene.gene_name = ?
"""

regions = DelayedSQL(ensembl_query, name="regions", parameters=[gene_name])

Next, define a SQL query to retieve the samples.

  • Python
gender = "female"
pop = "GBR"

sample_query = f"""
  SELECT sampleuid FROM `{sample_array}`
  WHERE pop = ? AND gender = ?
"""

samples = DelayedSQL(sample_query, name="samples", parameters=[pop, gender])

Finally, perform the distributed VCF query, passing the two delayed SQL objects as parameters. That will automatically build a task graph and dependency chain, and execute it in parallel.

  • Python
df = tiledb.cloud.vcf.read(
    dataset_uri=vcf_array, samples=samples, regions=regions
).to_pandas()
df
sample_name contig pos_start alleles fmt_GT
0 HG00097 chr20 62037705 [G, A] [0, 1]
1 HG00097 chr20 62037705 [G, A] [0, 1]
2 HG00097 chr20 62037705 [G, A] [0, 1]
3 HG00097 chr20 62037705 [G, A] [0, 1]
4 HG00120 chr20 62037705 [G, A] [0, 1]
... ... ... ... ... ...
2573 HG00262 chr20 62078124 [G, A] [0, 1]
2574 HG00262 chr20 62078124 [G, A] [0, 1]
2575 HG00262 chr20 62078124 [G, A] [0, 1]
2576 HG00262 chr20 62078124 [G, A] [0, 1]
2577 HG00262 chr20 62078124 [G, A] [0, 1]

2578 rows × 5 columns

Variant Statistics
User-Defined Functions