1. Structure
  2. Arrays
  3. Tutorials
  4. Advanced
  5. Advanced Reads
  6. Time Traveling
  7. Fragments
  • Home
  • What is TileDB?
  • Get Started
  • Explore Content
  • Accounts
    • Individual Accounts
      • Apply for the Free Tier
      • Profile
        • Overview
        • Cloud Credentials
        • Storage Paths
        • REST API Tokens
        • Credits
    • Organization Admins
      • Create an Organization
      • Profile
        • Overview
        • Members
        • Cloud Credentials
        • Storage Paths
        • Billing
      • API Tokens
    • Organization Members
      • Organization Invitations
      • Profile
        • Overview
        • Members
        • Cloud Credentials
        • Storage Paths
        • Billing
      • API Tokens
  • Catalog
    • Introduction
    • Data
      • Arrays
      • Tables
      • Single-Cell (SOMA)
      • Genomics (VCF)
      • Biomedical Imaging
      • Vector Search
      • Files
    • Code
      • Notebooks
      • Dashboards
      • User-Defined Functions
      • Task Graphs
      • ML Models
    • Groups
    • Marketplace
    • Search
  • Collaborate
    • Introduction
    • Organizations
    • Access Control
      • Introduction
      • Share Assets
      • Asset Permissions
      • Public Assets
    • Logging
    • Marketplace
  • Analyze
    • Introduction
    • Slice Data
    • Multi-Region Redirection
    • Notebooks
      • Launch a Notebook
      • Usage
      • Widgets
      • Notebook Image Dependencies
    • Dashboards
      • Dashboards
      • Streamlit
    • Preview
    • User-Defined Functions
    • Task Graphs
    • Serverless SQL
    • Monitor
      • Task Log
      • Task Graph Log
  • Scale
    • Introduction
    • Task Graphs
    • API Usage
  • Structure
    • Why Structure Is Important
    • Arrays
      • Introduction
      • Quickstart
      • Foundation
        • Array Data Model
        • Key Concepts
          • Storage
            • Arrays
            • Dimensions
            • Attributes
            • Cells
            • Domain
            • Tiles
            • Data Layout
            • Compression
            • Encryption
            • Tile Filters
            • Array Schema
            • Schema Evolution
            • Fragments
            • Fragment Metadata
            • Commits
            • Indexing
            • Array Metadata
            • Datetimes
            • Groups
            • Object Stores
          • Compute
            • Writes
            • Deletions
            • Consolidation
            • Vacuuming
            • Time Traveling
            • Reads
            • Query Conditions
            • Aggregates
            • User-Defined Functions
            • Distributed Compute
            • Concurrency
            • Parallelism
        • Storage Format Spec
      • Tutorials
        • Basics
          • Basic Dense Array
          • Basic Sparse Array
          • Array Metadata
          • Compression
          • Encryption
          • Data Layout
          • Tile Filters
          • Datetimes
          • Multiple Attributes
          • Variable-Length Attributes
          • String Dimensions
          • Nullable Attributes
          • Multi-Range Reads
          • Query Conditions
          • Aggregates
          • Deletions
          • Catching Errors
          • Configuration
          • Basic S3 Example
          • Basic TileDB Cloud
          • fromDataFrame
          • Palmer Penguins
        • Advanced
          • Schema Evolution
          • Advanced Writes
            • Write at a Timestamp
            • Get Fragment Info
            • Consolidation
              • Fragments
              • Fragment List
              • Consolidation Plan
              • Commits
              • Fragment Metadata
              • Array Metadata
            • Vacuuming
              • Fragments
              • Commits
              • Fragment Metadata
              • Array Metadata
          • Advanced Reads
            • Get Fragment Info
            • Time Traveling
              • Introduction
              • Fragments
              • Array Metadata
              • Schema Evolution
          • Array Upgrade
          • Backends
            • Amazon S3
            • Azure Blob Storage
            • Google Cloud Storage
            • MinIO
            • Lustre
          • Virtual Filesystem
          • User-Defined Functions
          • Distributed Compute
          • Result Estimation
          • Incomplete Queries
        • Management
          • Array Schema
          • Groups
          • Object Management
        • Performance
          • Summary of Factors
          • Dense vs. Sparse
          • Dimensions vs. Attributes
          • Compression
          • Tiling and Data Layout
          • Tuning Writes
          • Tuning Reads
      • API Reference
    • Tables
      • Introduction
      • Quickstart
      • Foundation
        • Data Model
        • Key Concepts
          • Indexes
          • Columnar Storage
          • Compression
          • Data Manipulation
          • Optimize Tables
          • ACID
          • Serverless SQL
          • SQL Connectors
          • Dataframes
          • CSV Ingestion
      • Tutorials
        • Basics
          • Ingestion with SQL
          • CSV Ingestion
          • Basic S3 Example
          • Running Locally
        • Advanced
          • Scalable Ingestion
          • Scalable Queries
      • API Reference
    • AI & ML
      • Vector Search
        • Introduction
        • Quickstart
        • Foundation
          • Data Model
          • Key Concepts
            • Vector Search
            • Vector Databases
            • Algorithms
            • Distance Metrics
            • Updates
            • Deployment Methods
            • Architecture
            • Distributed Compute
          • Storage Format Spec
        • Tutorials
          • Basics
            • Ingestion & Querying
            • Updates
            • Deletions
            • Basic S3 Example
            • Running Locally
          • Advanced
            • Versioning
            • Time Traveling
            • Consolidation
            • Distributed Compute
            • RAG LLM
            • LLM Memory
            • File Search
            • Image Search
            • Protein Search
          • Performance
        • API Reference
      • ML Models
        • Introduction
        • Quickstart
        • Foundation
          • Basics
          • Storage
          • Cloud Execution
          • Why TileDB for Machine Learning
        • Tutorials
          • Ingestion
            • Data Ingestion
              • Dense Datasets
              • Sparse Datasets
            • ML Model Ingestion
          • Management
            • Array Schema
            • Machine Learning: Groups
            • Time Traveling
    • Life Sciences
      • Single-cell
        • Introduction
        • Quickstart
        • Foundation
          • Data Model
          • Key Concepts
            • Data Structures
            • Use of Apache Arrow
            • Join IDs
            • State Management
            • TileDB Cloud URIs
          • SOMA API Specification
        • Tutorials
          • Data Ingestion
          • Bulk Ingestion Tutorial
          • Data Access
          • Distributed Compute
          • Basic S3 Example
          • Multi-Experiment Queries
          • Appending Data to a SOMA Experiment
          • Add New Measurements
          • SQL Queries
          • Running Locally
          • Shapes in TileDB-SOMA
          • Drug Discovery App
        • Spatial
          • Introduction
          • Foundation
            • Spatial Data Model
            • Data Structures
          • Tutorials
            • Spatial Data Ingestion
            • Access Spatial Data
            • Manage Coordinate Spaces
        • API Reference
      • Population Genomics
        • Introduction
        • Quickstart
        • Foundation
          • Data Model
          • Key Concepts
            • The N+1 Problem
            • Architecture
            • Arrays
            • Ingestion
            • Reads
            • Variant Statistics
            • Annotations
            • User-Defined Functions
            • Tables and SQL
            • Distributed Compute
          • Storage Format Spec
        • Tutorials
          • Basics
            • Basic Ingestion
            • Basic Queries
            • Export to VCF
            • Add New Samples
            • Deleting Samples
            • Basic S3 Example
            • Basic TileDB Cloud
          • Advanced
            • Scalable Ingestion
            • Scalable Queries
            • Query Transforms
            • Handling Large Queries
            • Annotations
              • Finding Annotations
              • Embedded Annotations
              • External Annotations
              • Annotation VCFs
              • Ingesting Annotations
            • Variant Statistics
            • Tables and SQL
            • User-Defined Functions
            • Sample Metadata
            • Split VCF
          • Performance
        • API Reference
          • Command Line Interface
          • Python API
          • Cloud API
      • Biomedical Imaging
        • Introduction
        • Foundation
          • Data Model
          • Key Concepts
            • Arrays
            • Ingestion
            • Reads
            • User Defined Functions
          • Storage Format Spec
        • Quickstart
        • Tutorials
          • Basics
            • Ingestion
            • Read
              • OpenSlide
              • TileDB-Py
          • Advanced
            • Batched Ingestion
            • Chunked Ingestion
            • Machine Learning
              • PyTorch
            • Napari
    • Files
  • API Reference
  • Self-Hosting
    • Installation
    • Upgrades
    • Administrative Tasks
    • Image Customization
      • Customize User-Defined Function Images
      • AWS ECR Container Registry
      • Customize Jupyter Notebook Images
    • Single Sign-On
      • Configure Single Sign-On
      • OpenID Connect
      • Okta SCIM
      • Microsoft Entra
  • Glossary
  1. Structure
  2. Arrays
  3. Tutorials
  4. Advanced
  5. Advanced Reads
  6. Time Traveling
  7. Fragments

Time Travel across Fragments

arrays
tutorials
python
r
time traveling
fragments
Learn how to time travel across different write operations on your arrays.
How to run this tutorial

You can run this tutorial in two ways:

  1. Locally on your machine.
  2. On TileDB Cloud.

However, since TileDB Cloud has a free tier, we strongly recommend that you sign up and run everything there, as that requires no installations or deployment.

This tutorial demonstrates the time traveling functionality on fragments (that is, on the various write operations performed to the array). For more information on time traveling, visit the Key Concepts: Time Traveling section.

First, import the necessary libraries, set the array URI (i.e., its path, which in this tutorial will be on local storage), and delete any previously created arrays with the same name.

  • Python
  • R
# Import necessary libraries
import os.path
import shutil

import numpy as np
import tiledb

# Set array URI
array_uri = os.path.expanduser("~/time_traveling_fragments")

# Delete array if it already exists
if os.path.exists(array_uri):
    shutil.rmtree(array_uri)
# Import necessary libraries
library(tiledb)

# Set array URI
array_uri <- path.expand("~/time_traveling_fragments_r")

# Delete array if it already exists
if (file.exists(array_uri)) {
  unlink(array_uri, recursive = TRUE)
}

Next, create the array by specifying its schema. This example uses a sparse array, but the described time traveling functionality is applicable to any array.

  • Python
  • R
# Create the two dimensions
d1 = tiledb.Dim(name="d1", domain=(0, 3), tile=2, dtype=np.int32)
d2 = tiledb.Dim(name="d2", domain=(0, 3), tile=2, dtype=np.int32)

# Create a domain using the two dimensions
dom = tiledb.Domain(d1, d2)

# Create an attribute
a = tiledb.Attr(name="a", dtype=np.int32)

# Create the array schema with `sparse=True`.
sch = tiledb.ArraySchema(domain=dom, sparse=True, attrs=[a])

# Create the array on disk (it will initially be empty)
tiledb.Array.create(array_uri, sch)
# Create the two dimensions
d1 <- tiledb_dim("d1", c(0L, 3L), 2L, "INT32")
d2 <- tiledb_dim("d2", c(0L, 3L), 2L, "INT32")

# Create a domain using the two dimensions
dom <- tiledb_domain(dims = c(d1, d2))

# Create an attribute
a <- tiledb_attr("a", type = "INT32")

# Create the array schema with `sparse = TRUE`
sch <- tiledb_array_schema(dom, a, sparse = TRUE)

# Create the array on disk (it will initially be empty)
arr <- tiledb_array_create(array_uri, sch)

Populate the array using a set of 1D arrays, one for the coordinates of each dimension, and one for the attribute values (TileDB sparse arrays expect the COO format). Observe that the write is perfomed at a specific user-defined timestamp (namely, at 1), in order to make time traveling easier later.

  • Python
  • R
# Prepare some data in numpy arrays
d1_data = np.array([2, 0, 3, 2, 0, 1], dtype=np.int32)
d2_data = np.array([0, 1, 1, 2, 3, 3], dtype=np.int32)
a_data = np.array([4, 1, 6, 5, 2, 3], dtype=np.int32)

# Open the array in write mode and write the data in COO format
with tiledb.open(array_uri, "w", timestamp=1) as A:
    A[d1_data, d2_data] = a_data
# Prepare some data in an array
d1_data <- c(2L, 0L, 3L, 2L, 0L, 1L)
d2_data <- c(0L, 1L, 1L, 2L, 3L, 3L)
a_data <- c(4L, 1L, 6L, 5L, 2L, 3L)

# Open the array for writing and write data to the array
arr <- tiledb_array(
  uri = array_uri
)
invisible(tiledb_array_close(arr))

arr <- tiledb_array_open_at(
  arr,
  type = "WRITE",
  timestamp = as.POSIXct(1)
)

arr[d1_data, d2_data] <- a_data

# Close the array
invisible(tiledb_array_close(arr))

arr <- tiledb_array_open_at(
  arr,
  type = "READ",
  timestamp = as.POSIXct(1)
)
cat("Entire array at timestamp 1:\n")
print(arr[])
cat("\n\n")
arr <- tiledb_array_close(arr)
Entire array at timestamp 1:
  d1 d2 a
1  0  1 1
2  2  0 4
3  3  1 6
4  0  3 2
5  1  3 3
6  2  2 5

Perform a second write at timestamp 2.

  • Python
  • R
# Prepare some data in numpy arrays
d1_data = np.array([1], dtype=np.int32)
d2_data = np.array([1], dtype=np.int32)
a_data = np.array([100], dtype=np.int32)

# Open the array in write mode and write the data in COO format
with tiledb.open(array_uri, "w", timestamp=2) as A:
    A[d1_data, d2_data] = a_data
# Prepare some data
d1_data <- 1L
d2_data <- 1L
a_data <- 100L

# Open the array for writing and write data to the array
arr <- tiledb_array_open_at(
  arr,
  type = "WRITE",
  timestamp = as.POSIXct(2)
)

arr[d1_data, d2_data] <- a_data

# Close the array
invisible(tiledb_array_close(arr))

The array is a folder in the path specified in array_uri. The contents are explained in other sections of the Academy, but you can observe that the above write operations created two fragment folders inside the fragments directory, one prefixed with _1_1 and one with _2_2, which are the timestamps the writes were performed at.

/Users/stavrospapadopoulos/time_traveling_fragments
├── __commits
│   ├── __1_1_5c4d161a2f605cbfc4fd9cc73b8707d0_21.wrt
│   └── __2_2_5a61590ef44f484ed16dc62d1541ceb0_21.wrt
├── __fragment_meta
├── __fragments
│   ├── __1_1_5c4d161a2f605cbfc4fd9cc73b8707d0_21
│   │   ├── __fragment_metadata.tdb
│   │   ├── a0.tdb
│   │   ├── d0.tdb
│   │   └── d1.tdb
│   └── __2_2_5a61590ef44f484ed16dc62d1541ceb0_21
│       ├── __fragment_metadata.tdb
│       ├── a0.tdb
│       ├── d0.tdb
│       └── d1.tdb
├── __labels
├── __meta
└── __schema
    ├── __1715893437411_1715893437411_00000002fe50a29790bda3a356126990
    └── __enumerations

10 directories, 11 files

Next, read the array at different timestamp combinations:

  • No timestamp provided: This means read at the current timestamp, which will include data from both the write operations.
  • At timestamp 1: This will include data from only the first write (i.e., read the array as of timestamp 1).
  • At timestamp 2: This will include data from both writes (i.e., read the array as of timestamp 2)
  • At timestamp range [2,2]: This will include data written only within the timestamp range, i.e., data only from the second write.

In a real-world scenario, the fragment timestamps will be the actual times at which the writes occured. In order to see what fragments the array contains and guide your time traveling, visit the Tutorials: Get Fragment Info section.

  • Python
  • R
# Read the entire array at current timestamp
with tiledb.open(array_uri, "r") as A:
    print("Entire array at current timestamp: ")
    print(A[:])
    print("\n")

# Read the entire array at timestamp 1
with tiledb.open(array_uri, "r", timestamp=1) as A:
    print("Entire array at timestamp 1: ")
    print(A[:])
    print("\n")

# Read the entire array at timestamp 2
with tiledb.open(array_uri, "r", timestamp=2) as A:
    print("Entire array at timestamp 2: ")
    print(A[:])
    print("\n")

# Read the entire array at timestamp range [2,2]
with tiledb.open(array_uri, "r", timestamp=(2, 2)) as A:
    print("Entire array at timestamp range [2,2]: ")
    print(A[:])
Entire array at current timestamp: 
OrderedDict({'a': array([  1, 100,   2,   3,   4,   6,   5], dtype=int32), 'd1': array([0, 1, 0, 1, 2, 3, 2], dtype=int32), 'd2': array([1, 1, 3, 3, 0, 1, 2], dtype=int32)})


Entire array at timestamp 1: 
OrderedDict({'a': array([1, 2, 3, 4, 6, 5], dtype=int32), 'd1': array([0, 0, 1, 2, 3, 2], dtype=int32), 'd2': array([1, 3, 3, 0, 1, 2], dtype=int32)})


Entire array at timestamp 2: 
OrderedDict({'a': array([  1, 100,   2,   3,   4,   6,   5], dtype=int32), 'd1': array([0, 1, 0, 1, 2, 3, 2], dtype=int32), 'd2': array([1, 1, 3, 3, 0, 1, 2], dtype=int32)})


Entire array at timestamp range [2,2]: 
OrderedDict({'a': array([100], dtype=int32), 'd1': array([1], dtype=int32), 'd2': array([1], dtype=int32)})
# Read the entire array at current timestamp
arr <- tiledb_array_open(arr, type = "READ")
cat("Entire array:\n")
print(arr[])
cat("\n\n")
arr <- tiledb_array_close(arr)

# Read the array up to and including timestamp 1
arr <- tiledb_array(
  uri = array_uri,
  query_type = "READ",
  timestamp_end = as.POSIXct(1),
  return_as = "data.frame"
)
cat("Entire array at timestamp 1:\n")
print(arr[])
cat("\n\n")
arr <- tiledb_array_close(arr)

# Read the array at timestamp 2
arr <- tiledb_array(
  uri = array_uri,
  query_type = "READ",
  timestamp_end = as.POSIXct(2),
  return_as = "data.frame"
)
cat("Entire array at timestamp 2:\n")
print(arr[])
cat("\n\n")
arr <- tiledb_array_close(arr)

# Read the array at timestamp range [2,2]
arr <- tiledb_array(
  uri = array_uri,
  query_type = "READ",
  timestamp_start = as.POSIXct(2),
  timestamp_end = as.POSIXct(2),
  return_as = "data.frame"
)
cat("Entire array at timestamp range [2,2]:\n")
print(arr[])
cat("\n\n")
arr <- tiledb_array_close(arr)
Entire array:
  d1 d2   a
1  0  1   1
2  1  1 100
3  2  0   4
4  3  1   6
5  0  3   2
6  1  3   3
7  2  2   5


Entire array at timestamp 1:
  d1 d2 a
1  0  1 1
2  2  0 4
3  3  1 6
4  0  3 2
5  1  3 3
6  2  2 5


Entire array at timestamp 2:
  d1 d2   a
1  0  1   1
2  1  1 100
3  2  0   4
4  3  1   6
5  0  3   2
6  1  3   3
7  2  2   5


Entire array at timestamp range [2,2]:
  d1 d2   a
1  1  1 100

Clean up in the end by deleting the array.

  • Python
  • R
# Delete the array
if os.path.exists(array_uri):
    shutil.rmtree(array_uri)
if (file.exists(array_uri)) {
  unlink(array_uri, recursive = TRUE)
}
Introduction
Array Metadata