1. Structure
  2. Arrays
  3. Tutorials
  4. Basics
  5. Data Layout
  • Home
  • What is TileDB?
  • Get Started
  • Explore Content
  • Accounts
    • Individual Accounts
      • Apply for the Free Tier
      • Profile
        • Overview
        • Cloud Credentials
        • Storage Paths
        • REST API Tokens
        • Credits
    • Organization Admins
      • Create an Organization
      • Profile
        • Overview
        • Members
        • Cloud Credentials
        • Storage Paths
        • Billing
      • API Tokens
    • Organization Members
      • Organization Invitations
      • Profile
        • Overview
        • Members
        • Cloud Credentials
        • Storage Paths
        • Billing
      • API Tokens
  • Catalog
    • Introduction
    • Data
      • Arrays
      • Tables
      • Single-Cell (SOMA)
      • Genomics (VCF)
      • Biomedical Imaging
      • Vector Search
      • Files
    • Code
      • Notebooks
      • Dashboards
      • User-Defined Functions
      • Task Graphs
      • ML Models
    • Groups
    • Marketplace
    • Search
  • Collaborate
    • Introduction
    • Organizations
    • Access Control
      • Introduction
      • Share Assets
      • Asset Permissions
      • Public Assets
    • Logging
    • Marketplace
  • Analyze
    • Introduction
    • Slice Data
    • Multi-Region Redirection
    • Notebooks
      • Launch a Notebook
      • Usage
      • Widgets
      • Notebook Image Dependencies
    • Dashboards
      • Dashboards
      • Streamlit
    • Preview
    • User-Defined Functions
    • Task Graphs
    • Serverless SQL
    • Monitor
      • Task Log
      • Task Graph Log
  • Scale
    • Introduction
    • Task Graphs
    • API Usage
  • Structure
    • Why Structure Is Important
    • Arrays
      • Introduction
      • Quickstart
      • Foundation
        • Array Data Model
        • Key Concepts
          • Storage
            • Arrays
            • Dimensions
            • Attributes
            • Cells
            • Domain
            • Tiles
            • Data Layout
            • Compression
            • Encryption
            • Tile Filters
            • Array Schema
            • Schema Evolution
            • Fragments
            • Fragment Metadata
            • Commits
            • Indexing
            • Array Metadata
            • Datetimes
            • Groups
            • Object Stores
          • Compute
            • Writes
            • Deletions
            • Consolidation
            • Vacuuming
            • Time Traveling
            • Reads
            • Query Conditions
            • Aggregates
            • User-Defined Functions
            • Distributed Compute
            • Concurrency
            • Parallelism
        • Storage Format Spec
      • Tutorials
        • Basics
          • Basic Dense Array
          • Basic Sparse Array
          • Array Metadata
          • Compression
          • Encryption
          • Data Layout
          • Tile Filters
          • Datetimes
          • Multiple Attributes
          • Variable-Length Attributes
          • String Dimensions
          • Nullable Attributes
          • Multi-Range Reads
          • Query Conditions
          • Aggregates
          • Deletions
          • Catching Errors
          • Configuration
          • Basic S3 Example
          • Basic TileDB Cloud
          • fromDataFrame
          • Palmer Penguins
        • Advanced
          • Schema Evolution
          • Advanced Writes
            • Write at a Timestamp
            • Get Fragment Info
            • Consolidation
              • Fragments
              • Fragment List
              • Consolidation Plan
              • Commits
              • Fragment Metadata
              • Array Metadata
            • Vacuuming
              • Fragments
              • Commits
              • Fragment Metadata
              • Array Metadata
          • Advanced Reads
            • Get Fragment Info
            • Time Traveling
              • Introduction
              • Fragments
              • Array Metadata
              • Schema Evolution
          • Array Upgrade
          • Backends
            • Amazon S3
            • Azure Blob Storage
            • Google Cloud Storage
            • MinIO
            • Lustre
          • Virtual Filesystem
          • User-Defined Functions
          • Distributed Compute
          • Result Estimation
          • Incomplete Queries
        • Management
          • Array Schema
          • Groups
          • Object Management
        • Performance
          • Summary of Factors
          • Dense vs. Sparse
          • Dimensions vs. Attributes
          • Compression
          • Tiling and Data Layout
          • Tuning Writes
          • Tuning Reads
      • API Reference
    • Tables
      • Introduction
      • Quickstart
      • Foundation
        • Data Model
        • Key Concepts
          • Indexes
          • Columnar Storage
          • Compression
          • Data Manipulation
          • Optimize Tables
          • ACID
          • Serverless SQL
          • SQL Connectors
          • Dataframes
          • CSV Ingestion
      • Tutorials
        • Basics
          • Ingestion with SQL
          • CSV Ingestion
          • Basic S3 Example
          • Running Locally
        • Advanced
          • Scalable Ingestion
          • Scalable Queries
      • API Reference
    • AI & ML
      • Vector Search
        • Introduction
        • Quickstart
        • Foundation
          • Data Model
          • Key Concepts
            • Vector Search
            • Vector Databases
            • Algorithms
            • Distance Metrics
            • Updates
            • Deployment Methods
            • Architecture
            • Distributed Compute
          • Storage Format Spec
        • Tutorials
          • Basics
            • Ingestion & Querying
            • Updates
            • Deletions
            • Basic S3 Example
            • Running Locally
          • Advanced
            • Versioning
            • Time Traveling
            • Consolidation
            • Distributed Compute
            • RAG LLM
            • LLM Memory
            • File Search
            • Image Search
            • Protein Search
          • Performance
        • API Reference
      • ML Models
        • Introduction
        • Quickstart
        • Foundation
          • Basics
          • Storage
          • Cloud Execution
          • Why TileDB for Machine Learning
        • Tutorials
          • Ingestion
            • Data Ingestion
              • Dense Datasets
              • Sparse Datasets
            • ML Model Ingestion
          • Management
            • Array Schema
            • Machine Learning: Groups
            • Time Traveling
    • Life Sciences
      • Single-cell
        • Introduction
        • Quickstart
        • Foundation
          • Data Model
          • Key Concepts
            • Data Structures
            • Use of Apache Arrow
            • Join IDs
            • State Management
            • TileDB Cloud URIs
          • SOMA API Specification
        • Tutorials
          • Data Ingestion
          • Bulk Ingestion Tutorial
          • Data Access
          • Distributed Compute
          • Basic S3 Example
          • Multi-Experiment Queries
          • Appending Data to a SOMA Experiment
          • Add New Measurements
          • SQL Queries
          • Running Locally
          • Shapes in TileDB-SOMA
          • Drug Discovery App
        • Spatial
          • Introduction
          • Foundation
            • Spatial Data Model
            • Data Structures
          • Tutorials
            • Spatial Data Ingestion
            • Access Spatial Data
            • Manage Coordinate Spaces
        • API Reference
      • Population Genomics
        • Introduction
        • Quickstart
        • Foundation
          • Data Model
          • Key Concepts
            • The N+1 Problem
            • Architecture
            • Arrays
            • Ingestion
            • Reads
            • Variant Statistics
            • Annotations
            • User-Defined Functions
            • Tables and SQL
            • Distributed Compute
          • Storage Format Spec
        • Tutorials
          • Basics
            • Basic Ingestion
            • Basic Queries
            • Export to VCF
            • Add New Samples
            • Deleting Samples
            • Basic S3 Example
            • Basic TileDB Cloud
          • Advanced
            • Scalable Ingestion
            • Scalable Queries
            • Query Transforms
            • Handling Large Queries
            • Annotations
              • Finding Annotations
              • Embedded Annotations
              • External Annotations
              • Annotation VCFs
              • Ingesting Annotations
            • Variant Statistics
            • Tables and SQL
            • User-Defined Functions
            • Sample Metadata
            • Split VCF
          • Performance
        • API Reference
          • Command Line Interface
          • Python API
          • Cloud API
      • Biomedical Imaging
        • Introduction
        • Foundation
          • Data Model
          • Key Concepts
            • Arrays
            • Ingestion
            • Reads
            • User Defined Functions
          • Storage Format Spec
        • Quickstart
        • Tutorials
          • Basics
            • Ingestion
            • Read
              • OpenSlide
              • TileDB-Py
          • Advanced
            • Batched Ingestion
            • Chunked Ingestion
            • Machine Learning
              • PyTorch
            • Napari
    • Files
  • API Reference
  • Self-Hosting
    • Installation
    • Upgrades
    • Administrative Tasks
    • Image Customization
      • Customize User-Defined Function Images
      • AWS ECR Container Registry
      • Customize Jupyter Notebook Images
    • Single Sign-On
      • Configure Single Sign-On
      • OpenID Connect
      • Okta SCIM
      • Microsoft Entra
  • Glossary
  1. Structure
  2. Arrays
  3. Tutorials
  4. Basics
  5. Data Layout

Data Layout

Learn how the tile order and cell order affect the data layout on storage.
How to run this tutorial

You can run this tutorial in two ways:

  1. Locally on your machine.
  2. On TileDB Cloud.

However, since TileDB Cloud has a free tier, we strongly recommend that you sign up and run everything there, as that requires no installations or deployment.

This tutorial describes how to set the tile and cell order for your arrays and how it affects querying arrays using the global order. You’ll create four dense arrays, each with a different combination of tile and cell order. You’ll also create two sparse arrays: one with row-major tile and cell order, and another with Hilbert cell order.

For more information about data layout, visit the Key Concepts: Data Layout doc.

First, import the necessary libraries, set the array URIs (that is, their paths, which in this tutorial will be on local storage), and delete any previously created arrays with the same names.

  • Python
  • R
# Import necessary libraries
import os.path
import shutil

import numpy as np
import tiledb

# Set array URIs
array_uri_dense_cr_tr = os.path.expanduser("~/data_layout_dense_cr_tr_python")
array_uri_dense_cr_tc = os.path.expanduser("~/data_layout_dense_cr_tc_python")
array_uri_dense_cc_tr = os.path.expanduser("~/data_layout_dense_cc_tr_python")
array_uri_dense_cc_tc = os.path.expanduser("~/data_layout_dense_cc_tc_python")
array_uri_sparse_cr_tr = os.path.expanduser("~/data_layout_sparse_cr_tr_python")
array_uri_sparse_hilbert = os.path.expanduser("~/data_layout_sparse_hilbert_python")

# Delete the arrays if they already exist
if os.path.exists(array_uri_dense_cr_tr):
    shutil.rmtree(array_uri_dense_cr_tr)
if os.path.exists(array_uri_dense_cr_tc):
    shutil.rmtree(array_uri_dense_cr_tc)
if os.path.exists(array_uri_dense_cc_tr):
    shutil.rmtree(array_uri_dense_cc_tr)
if os.path.exists(array_uri_dense_cc_tc):
    shutil.rmtree(array_uri_dense_cc_tc)
if os.path.exists(array_uri_sparse_cr_tr):
    shutil.rmtree(array_uri_sparse_cr_tr)
if os.path.exists(array_uri_sparse_hilbert):
    shutil.rmtree(array_uri_sparse_hilbert)
library(tiledb)

# Set array URIs
array_uri_dense_cr_tr <- path.expand("~/data_layout_dense_cr_tr_r")
array_uri_dense_cr_tc <- path.expand("~/data_layout_dense_cr_tc_r")
array_uri_dense_cc_tr <- path.expand("~/data_layout_dense_cc_tr_r")
array_uri_dense_cc_tc <- path.expand("~/data_layout_dense_cc_tc_r")
array_uri_sparse_cr_tr <- path.expand("~/data_layout_sparse_cr_tr_r")
array_uri_sparse_hilbert <- path.expand("~/data_layout_sparse_hilbert_r")

# Delete the arrays if they already exist
if (file.exists(array_uri_dense_cr_tr)) {
  unlink(array_uri_dense_cr_tr, recursive = TRUE)
}
if (file.exists(array_uri_dense_cr_tc)) {
  unlink(array_uri_dense_cr_tc, recursive = TRUE)
}
if (file.exists(array_uri_dense_cc_tr)) {
  unlink(array_uri_dense_cc_tr, recursive = TRUE)
}
if (file.exists(array_uri_dense_cc_tc)) {
  unlink(array_uri_dense_cc_tc, recursive = TRUE)
}
if (file.exists(array_uri_sparse_cr_tr)) {
  unlink(array_uri_sparse_cr_tr, recursive = TRUE)
}
if (file.exists(array_uri_sparse_hilbert)) {
  unlink(array_uri_sparse_hilbert, recursive = TRUE)
}

Next, create the underlying schema objects, including dimensions, domains, and an attribute:

  • Python
  • R
# Create the two dense dimensions
d1_dense = tiledb.Dim(name="d1", domain=(1, 4), tile=2, dtype=np.int32)
d2_dense = tiledb.Dim(name="d2", domain=(1, 4), tile=2, dtype=np.int32)

# Create the two sparse dimensions
d1_sparse = tiledb.Dim(name="d1", domain=(0, 3), tile=2, dtype=np.int32)
d2_sparse = tiledb.Dim(name="d2", domain=(0, 3), tile=2, dtype=np.int32)

# Create a dense domain using the two dense dimensions
dom_dense = tiledb.Domain(d1_dense, d2_dense)

# Create a sparse domain using the two sparse dimensions
dom_sparse = tiledb.Domain(d1_sparse, d2_sparse)

# Create an attribute
a = tiledb.Attr(name="a", dtype=np.int32)
# Create the two dense dimensions
d1_dense <- tiledb_dim("d1", c(1L, 4L), 2L, "INT32")
d2_dense <- tiledb_dim("d2", c(1L, 4L), 2L, "INT32")

# Create the two sparse dimensions
d1_sparse <- tiledb_dim("d1", c(0L, 3L), 2L, "INT32")
d2_sparse <- tiledb_dim("d2", c(0L, 3L), 2L, "INT32")

# Create a dense domain using the two dense dimensions
dom_dense <- tiledb_domain(dims = c(d1_dense, d2_dense))

# Create a sparse domain using the two sparse dimensions
dom_sparse <- tiledb_domain(dims = c(d1_sparse, d2_sparse))

# Create an attribute
a <- tiledb_attr("a", type = "INT32")

Once you created the necessary schema objects, create the schema for each array:

  • Python
  • R
sch_dense_cr_tr = tiledb.ArraySchema(domain=dom_dense, attrs=[a], sparse=False)

# "row-major" is the default for both cell order and tile order
# the following statement is functionally the same:
# sch_dense_cr_tr = tiledb.ArraySchema(
#     domain=dom, attrs=[a], cell_order="row-major", tile_order="row-major", sparse=False
# )

sch_dense_cr_tc = tiledb.ArraySchema(
    domain=dom_dense,
    attrs=[a],
    cell_order="row-major",
    tile_order="col-major",
    sparse=False,
)
sch_dense_cc_tr = tiledb.ArraySchema(
    domain=dom_dense,
    attrs=[a],
    cell_order="col-major",
    tile_order="row-major",
    sparse=False,
)
sch_dense_cc_tc = tiledb.ArraySchema(
    domain=dom_dense,
    attrs=[a],
    cell_order="col-major",
    tile_order="col-major",
    sparse=False,
)
sch_sparse_cr_tr = tiledb.ArraySchema(domain=dom_sparse, attrs=[a], sparse=True)
sch_sparse_hilbert = tiledb.ArraySchema(
    domain=dom_sparse, attrs=[a], cell_order="hilbert", sparse=True
)
sch_dense_cr_tr <- tiledb_array_schema(dom_dense, a, cell_order = "ROW_MAJOR", tile_order = "ROW_MAJOR", sparse = FALSE)
sch_dense_cr_tc <- tiledb_array_schema(dom_dense, a, cell_order = "ROW_MAJOR", tile_order = "COL_MAJOR", sparse = FALSE)
sch_dense_cc_tr <- tiledb_array_schema(dom_dense, a, cell_order = "COL_MAJOR", tile_order = "ROW_MAJOR", sparse = FALSE)
sch_dense_cc_tc <- tiledb_array_schema(dom_dense, a, sparse = FALSE)
# "COL_MAJOR" is the default for both cell order and tile order
# The following statement is functionally the same:
# sch_dense_cc_tc <- tiledb_array_schema(dom_dense, a, cell_order = "COL_MAJOR", tile_order = "COL_MAJOR", sparse = FALSE)
sch_sparse_cr_tr <- tiledb_array_schema(dom_sparse, a, cell_order = "ROW_MAJOR", tile_order = "ROW_MAJOR", sparse = TRUE)
sch_sparse_hilbert <- tiledb_array_schema(dom_sparse, a, cell_order = "HILBERT", sparse = TRUE)

Next, create the arrays with their corresponding schemas:

  • Python
  • R
tiledb.Array.create(array_uri_dense_cr_tr, sch_dense_cr_tr)
tiledb.Array.create(array_uri_dense_cr_tc, sch_dense_cr_tc)
tiledb.Array.create(array_uri_dense_cc_tr, sch_dense_cc_tr)
tiledb.Array.create(array_uri_dense_cc_tc, sch_dense_cc_tc)
tiledb.Array.create(array_uri_sparse_cr_tr, sch_sparse_cr_tr)
tiledb.Array.create(array_uri_sparse_hilbert, sch_sparse_hilbert)
arr_dense_cr_tr <- tiledb_array_create(array_uri_dense_cr_tr, sch_dense_cr_tr)
arr_dense_cr_tc <- tiledb_array_create(array_uri_dense_cr_tc, sch_dense_cr_tc)
arr_dense_cc_tr <- tiledb_array_create(array_uri_dense_cc_tr, sch_dense_cc_tr)
arr_dense_cc_tc <- tiledb_array_create(array_uri_dense_cc_tc, sch_dense_cc_tc)
arr_sparse_cr_tr <- tiledb_array_create(array_uri_sparse_cr_tr, sch_sparse_cr_tr)
arr_sparse_hilbert <- tiledb_array_create(array_uri_sparse_hilbert, sch_sparse_hilbert)

Now prepare some data for each array.

  • Python
  • R
# Prepare some data in NumPy arrays
dense_data = np.array(
    [[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16]], dtype=np.int32
)

sparse_d1_data = np.array([2, 0, 3, 2, 0, 1], dtype=np.int32)
sparse_d2_data = np.array([0, 1, 1, 2, 3, 3], dtype=np.int32)
sparse_a_data = np.array([4, 1, 6, 5, 2, 3], dtype=np.int32)
dense_data <- t(array(1:16, dim = c(4, 4)))
sparse_d1_data <- c(2L, 0L, 3L, 2L, 0L, 1L)
sparse_d2_data <- c(0L, 1L, 1L, 2L, 3L, 3L)
sparse_a_data <- c(4L, 1L, 6L, 5L, 2L, 3L)

Write the corresponding data to each array.

  • Python
  • R
# Write data to the arrays
with tiledb.open(array_uri_dense_cr_tr, "w") as A:
    A[:] = dense_data
with tiledb.open(array_uri_dense_cr_tc, "w") as A:
    A[:] = dense_data
with tiledb.open(array_uri_dense_cc_tr, "w") as A:
    A[:] = dense_data
with tiledb.open(array_uri_dense_cc_tc, "w") as A:
    A[:] = dense_data
with tiledb.open(array_uri_sparse_cr_tr, "w") as A:
    A[sparse_d1_data, sparse_d2_data] = sparse_a_data
with tiledb.open(array_uri_sparse_hilbert, "w") as A:
    A[sparse_d1_data, sparse_d2_data] = sparse_a_data
# Write data to the arrays
arr_dense_cr_tr <- tiledb_array(uri = array_uri_dense_cr_tr, query_type = "WRITE", return_as = "data.frame")
arr_dense_cr_tr[] <- dense_data
arr_dense_cr_tr <- tiledb_array_close(arr_dense_cr_tr)

arr_dense_cr_tc <- tiledb_array(uri = array_uri_dense_cr_tc, query_type = "WRITE", return_as = "data.frame")
arr_dense_cr_tc[] <- dense_data
arr_dense_cr_tc <- tiledb_array_close(arr_dense_cr_tc)

arr_dense_cc_tr <- tiledb_array(uri = array_uri_dense_cc_tr, query_type = "WRITE", return_as = "data.frame")
arr_dense_cc_tr[] <- dense_data
arr_dense_cc_tr <- tiledb_array_close(arr_dense_cc_tr)

arr_dense_cc_tc <- tiledb_array(uri = array_uri_dense_cc_tc, query_type = "WRITE", return_as = "data.frame")
arr_dense_cc_tc[] <- dense_data
arr_dense_cc_tc <- tiledb_array_close(arr_dense_cc_tc)

arr_sparse_cr_tr <- tiledb_array(uri = array_uri_sparse_cr_tr, query_type = "WRITE", return_as = "data.frame")
arr_sparse_cr_tr[sparse_d1_data, sparse_d2_data] <- sparse_a_data
arr_sparse_cr_tr <- tiledb_array_close(arr_sparse_cr_tr)

arr_sparse_hilbert <- tiledb_array(uri = array_uri_sparse_hilbert, query_type = "WRITE", return_as = "data.frame")
arr_sparse_hilbert[sparse_d1_data, sparse_d2_data] <- sparse_a_data
arr_sparse_hilbert <- tiledb_array_close(arr_sparse_hilbert)

Now read the data from each array.

  • Python
  • R
# read data from each array
with tiledb.open(array_uri_dense_cr_tr, "r") as A:
    print("Dense array - row-major cell order and tile order:")
    print(A.query(attrs=["a"], dims=["d1", "d2"], order="G")[:]["a"])
with tiledb.open(array_uri_dense_cr_tc, "r") as A:
    print("Dense array - row-major cell order and col-major tile order:")
    print(A.query(attrs=["a"], dims=["d1", "d2"], order="G")[:]["a"])
with tiledb.open(array_uri_dense_cc_tr, "r") as A:
    print("Dense array - col-major cell order and row-major tile order:")
    print(A.query(attrs=["a"], dims=["d1", "d2"], order="G")[:]["a"])
with tiledb.open(array_uri_dense_cc_tc, "r") as A:
    print("Dense array - col-major cell order tile order:")
    print(A.query(attrs=["a"], dims=["d1", "d2"], order="G")[:]["a"])
with tiledb.open(array_uri_sparse_cr_tr, "r") as A:
    print("Sparse array - row-major cell order and tile order:")
    print(A.query(order="G")[:]["a"])
with tiledb.open(array_uri_sparse_hilbert, "r") as A:
    print("Sparse array - Hilbert order:")
    print(A.query(order="G")[:]["a"])
Dense array - row-major cell order and tile order:
[ 1  2  5  6  3  4  7  8  9 10 13 14 11 12 15 16]
Dense array - row-major cell order and col-major tile order:
[ 1  2  5  6  9 10 13 14  3  4  7  8 11 12 15 16]
Dense array - col-major cell order and row-major tile order:
[ 1  5  2  6  3  7  4  8  9 13 10 14 11 15 12 16]
Dense array - col-major cell order tile order:
[ 1  5  2  6  9 13 10 14  3  7  4  8 11 15 12 16]
Sparse array - row-major cell order and tile order:
[1 2 3 4 6 5]
Sparse array - Hilbert order:
[1 2 3 5 6 4]
# Read data from each array
global_order_query <- function(arr, subarray) {
  qry <- tiledb_query(arr, "READ")
  qry <- tiledb_query_set_subarray(qry, subarray)
  dim1 <- integer(16)
  dim2 <- integer(16)
  values <- integer(16)
  tiledb_query_set_buffer(qry, "d1", dim1)
  tiledb_query_set_buffer(qry, "d2", dim2)
  tiledb_query_set_buffer(qry, "a", values)
  tiledb_query_set_layout(qry, layout = "GLOBAL")
  tiledb_query_submit(qry)
  tiledb_query_finalize(qry)
  n <- tiledb_query_result_buffer_elements(qry, "a")
  print(data.frame(rows = values)[1:n, ])
}

dense_subarray <- c(1L, 4L, 1L, 4L)
sparse_subarray <- c(0L, 3L, 0L, 3L)

global_order_query(arr_dense_cr_tr, dense_subarray)
global_order_query(arr_dense_cr_tc, dense_subarray)
global_order_query(arr_dense_cc_tr, dense_subarray)
global_order_query(arr_dense_cc_tc, dense_subarray)
global_order_query(arr_sparse_cr_tr, sparse_subarray)
global_order_query(arr_sparse_hilbert, sparse_subarray)
 [1]  1  2  5  6  3  4  7  8  9 10 13 14 11 12 15 16
 [1]  1  2  5  6  9 10 13 14  3  4  7  8 11 12 15 16
 [1]  1  5  2  6  3  7  4  8  9 13 10 14 11 15 12 16
 [1]  1  5  2  6  9 13 10 14  3  7  4  8 11 15 12 16
[1] 1 2 3 4 6 5
[1] 1 2 3 5 6 4

Clean up in the end by deleting the array directories.

  • Python
  • R
# Delete the arrays if they already exist
if os.path.exists(array_uri_dense_cr_tr):
    shutil.rmtree(array_uri_dense_cr_tr)
if os.path.exists(array_uri_dense_cr_tc):
    shutil.rmtree(array_uri_dense_cr_tc)
if os.path.exists(array_uri_dense_cc_tr):
    shutil.rmtree(array_uri_dense_cc_tr)
if os.path.exists(array_uri_dense_cc_tc):
    shutil.rmtree(array_uri_dense_cc_tc)
if os.path.exists(array_uri_sparse_cr_tr):
    shutil.rmtree(array_uri_sparse_cr_tr)
if os.path.exists(array_uri_sparse_hilbert):
    shutil.rmtree(array_uri_sparse_hilbert)
# Delete the arrays if they already exist
if (file.exists(array_uri_dense_cr_tr)) {
  unlink(array_uri_dense_cr_tr, recursive = TRUE)
}
if (file.exists(array_uri_dense_cr_tc)) {
  unlink(array_uri_dense_cr_tc, recursive = TRUE)
}
if (file.exists(array_uri_dense_cc_tr)) {
  unlink(array_uri_dense_cc_tr, recursive = TRUE)
}
if (file.exists(array_uri_dense_cc_tc)) {
  unlink(array_uri_dense_cc_tc, recursive = TRUE)
}
if (file.exists(array_uri_sparse_cr_tr)) {
  unlink(array_uri_sparse_cr_tr, recursive = TRUE)
}
if (file.exists(array_uri_sparse_hilbert)) {
  unlink(array_uri_sparse_hilbert, recursive = TRUE)
}
Encryption
Tile Filters