1. Structure
  2. AI & ML
  3. Vector Search
  4. Tutorials
  5. Basics
  6. Running Locally
  • Home
  • What is TileDB?
  • Get Started
  • Explore Content
  • Accounts
    • Individual Accounts
      • Apply for the Free Tier
      • Profile
        • Overview
        • Cloud Credentials
        • Storage Paths
        • REST API Tokens
        • Credits
    • Organization Admins
      • Create an Organization
      • Profile
        • Overview
        • Members
        • Cloud Credentials
        • Storage Paths
        • Billing
      • API Tokens
    • Organization Members
      • Organization Invitations
      • Profile
        • Overview
        • Members
        • Cloud Credentials
        • Storage Paths
        • Billing
      • API Tokens
  • Catalog
    • Introduction
    • Data
      • Arrays
      • Tables
      • Single-Cell (SOMA)
      • Genomics (VCF)
      • Biomedical Imaging
      • Vector Search
      • Files
    • Code
      • Notebooks
      • Dashboards
      • User-Defined Functions
      • Task Graphs
      • ML Models
    • Groups
    • Marketplace
    • Search
  • Collaborate
    • Introduction
    • Organizations
    • Access Control
      • Introduction
      • Share Assets
      • Asset Permissions
      • Public Assets
    • Logging
    • Marketplace
  • Analyze
    • Introduction
    • Slice Data
    • Multi-Region Redirection
    • Notebooks
      • Launch a Notebook
      • Usage
      • Widgets
      • Notebook Image Dependencies
    • Dashboards
      • Dashboards
      • Streamlit
    • Preview
    • User-Defined Functions
    • Task Graphs
    • Serverless SQL
    • Monitor
      • Task Log
      • Task Graph Log
  • Scale
    • Introduction
    • Task Graphs
    • API Usage
  • Structure
    • Why Structure Is Important
    • Arrays
      • Introduction
      • Quickstart
      • Foundation
        • Array Data Model
        • Key Concepts
          • Storage
            • Arrays
            • Dimensions
            • Attributes
            • Cells
            • Domain
            • Tiles
            • Data Layout
            • Compression
            • Encryption
            • Tile Filters
            • Array Schema
            • Schema Evolution
            • Fragments
            • Fragment Metadata
            • Commits
            • Indexing
            • Array Metadata
            • Datetimes
            • Groups
            • Object Stores
          • Compute
            • Writes
            • Deletions
            • Consolidation
            • Vacuuming
            • Time Traveling
            • Reads
            • Query Conditions
            • Aggregates
            • User-Defined Functions
            • Distributed Compute
            • Concurrency
            • Parallelism
        • Storage Format Spec
      • Tutorials
        • Basics
          • Basic Dense Array
          • Basic Sparse Array
          • Array Metadata
          • Compression
          • Encryption
          • Data Layout
          • Tile Filters
          • Datetimes
          • Multiple Attributes
          • Variable-Length Attributes
          • String Dimensions
          • Nullable Attributes
          • Multi-Range Reads
          • Query Conditions
          • Aggregates
          • Deletions
          • Catching Errors
          • Configuration
          • Basic S3 Example
          • Basic TileDB Cloud
          • fromDataFrame
          • Palmer Penguins
        • Advanced
          • Schema Evolution
          • Advanced Writes
            • Write at a Timestamp
            • Get Fragment Info
            • Consolidation
              • Fragments
              • Fragment List
              • Consolidation Plan
              • Commits
              • Fragment Metadata
              • Array Metadata
            • Vacuuming
              • Fragments
              • Commits
              • Fragment Metadata
              • Array Metadata
          • Advanced Reads
            • Get Fragment Info
            • Time Traveling
              • Introduction
              • Fragments
              • Array Metadata
              • Schema Evolution
          • Array Upgrade
          • Backends
            • Amazon S3
            • Azure Blob Storage
            • Google Cloud Storage
            • MinIO
            • Lustre
          • Virtual Filesystem
          • User-Defined Functions
          • Distributed Compute
          • Result Estimation
          • Incomplete Queries
        • Management
          • Array Schema
          • Groups
          • Object Management
        • Performance
          • Summary of Factors
          • Dense vs. Sparse
          • Dimensions vs. Attributes
          • Compression
          • Tiling and Data Layout
          • Tuning Writes
          • Tuning Reads
      • API Reference
    • Tables
      • Introduction
      • Quickstart
      • Foundation
        • Data Model
        • Key Concepts
          • Indexes
          • Columnar Storage
          • Compression
          • Data Manipulation
          • Optimize Tables
          • ACID
          • Serverless SQL
          • SQL Connectors
          • Dataframes
          • CSV Ingestion
      • Tutorials
        • Basics
          • Ingestion with SQL
          • CSV Ingestion
          • Basic S3 Example
          • Running Locally
        • Advanced
          • Scalable Ingestion
          • Scalable Queries
      • API Reference
    • AI & ML
      • Vector Search
        • Introduction
        • Quickstart
        • Foundation
          • Data Model
          • Key Concepts
            • Vector Search
            • Vector Databases
            • Algorithms
            • Distance Metrics
            • Updates
            • Deployment Methods
            • Architecture
            • Distributed Compute
          • Storage Format Spec
        • Tutorials
          • Basics
            • Ingestion & Querying
            • Updates
            • Deletions
            • Basic S3 Example
            • Running Locally
          • Advanced
            • Versioning
            • Time Traveling
            • Consolidation
            • Distributed Compute
            • RAG LLM
            • LLM Memory
            • File Search
            • Image Search
            • Protein Search
          • Performance
        • API Reference
      • ML Models
        • Introduction
        • Quickstart
        • Foundation
          • Basics
          • Storage
          • Cloud Execution
          • Why TileDB for Machine Learning
        • Tutorials
          • Ingestion
            • Data Ingestion
              • Dense Datasets
              • Sparse Datasets
            • ML Model Ingestion
          • Management
            • Array Schema
            • Machine Learning: Groups
            • Time Traveling
    • Life Sciences
      • Single-cell
        • Introduction
        • Quickstart
        • Foundation
          • Data Model
          • Key Concepts
            • Data Structures
            • Use of Apache Arrow
            • Join IDs
            • State Management
            • TileDB Cloud URIs
          • SOMA API Specification
        • Tutorials
          • Data Ingestion
          • Bulk Ingestion Tutorial
          • Data Access
          • Distributed Compute
          • Basic S3 Example
          • Multi-Experiment Queries
          • Appending Data to a SOMA Experiment
          • Add New Measurements
          • SQL Queries
          • Running Locally
          • Shapes in TileDB-SOMA
          • Drug Discovery App
        • Spatial
          • Introduction
          • Foundation
            • Spatial Data Model
            • Data Structures
          • Tutorials
            • Spatial Data Ingestion
            • Access Spatial Data
            • Manage Coordinate Spaces
        • API Reference
      • Population Genomics
        • Introduction
        • Quickstart
        • Foundation
          • Data Model
          • Key Concepts
            • The N+1 Problem
            • Architecture
            • Arrays
            • Ingestion
            • Reads
            • Variant Statistics
            • Annotations
            • User-Defined Functions
            • Tables and SQL
            • Distributed Compute
          • Storage Format Spec
        • Tutorials
          • Basics
            • Basic Ingestion
            • Basic Queries
            • Export to VCF
            • Add New Samples
            • Deleting Samples
            • Basic S3 Example
            • Basic TileDB Cloud
          • Advanced
            • Scalable Ingestion
            • Scalable Queries
            • Query Transforms
            • Handling Large Queries
            • Annotations
              • Finding Annotations
              • Embedded Annotations
              • External Annotations
              • Annotation VCFs
              • Ingesting Annotations
            • Variant Statistics
            • Tables and SQL
            • User-Defined Functions
            • Sample Metadata
            • Split VCF
          • Performance
        • API Reference
          • Command Line Interface
          • Python API
          • Cloud API
      • Biomedical Imaging
        • Introduction
        • Foundation
          • Data Model
          • Key Concepts
            • Arrays
            • Ingestion
            • Reads
            • User Defined Functions
          • Storage Format Spec
        • Quickstart
        • Tutorials
          • Basics
            • Ingestion
            • Read
              • OpenSlide
              • TileDB-Py
          • Advanced
            • Batched Ingestion
            • Chunked Ingestion
            • Machine Learning
              • PyTorch
            • Napari
    • Files
  • API Reference
  • Self-Hosting
    • Installation
    • Upgrades
    • Administrative Tasks
    • Image Customization
      • Customize User-Defined Function Images
      • AWS ECR Container Registry
      • Customize Jupyter Notebook Images
    • Single Sign-On
      • Configure Single Sign-On
      • OpenID Connect
      • Okta SCIM
      • Microsoft Entra
  • Glossary

On this page

  • Installation
  • Local storage
  • Storage on S3
  • Storage on TileDB Cloud
  1. Structure
  2. AI & ML
  3. Vector Search
  4. Tutorials
  5. Basics
  6. Running Locally

Run TileDB-Vector-Search Locally

ai/ml
vector search
tutorials
local access
How to install TileDB-Vector-Search and interact with TileDB Cloud from your local machine.

This tutorial shows how you can install TileDB-Vector-Search and the TileDB Cloud Python client so that you can use the software from your local machine.

Installation

To install the TileDB-Vector-Search and TileDB Cloud Python client, run the following in bash:

# Install the TileDB Cloud Python client
pip install tiledb-cloud

# Install the TileDB-Vector-Search library
# - Using Pip
pip install tiledb-vector-search
# - Or, using conda
conda install -c conda-forge -c tiledb tiledb-vector-search

Local storage

To create and query vector indexes in local storage, read the Quickstart or Tutorials: Ingestion and Querying tutorials.

Storage on S3

To create and query vector indexes on S3, read the Tutorials: Basic S3 example tutorial.

Storage on TileDB Cloud

Take note of the following when interacting with TileDB Cloud outside of the notebook environments of the TileDB Cloud service:

  1. You need to create a REST API token from the TileDB Cloud console.
  2. You need to set the REST API token in an environment variable and login using the token value.
  3. When creating a new index, you need to use a URI in the form tiledb://<your_username>/<S3_path>/<index_name>, where S3_path is the location on S3 where you wish to physically store the index.
  4. When referring to the index after creating it (for example, when submitting queries), use a URI in the form tiledb://<your_username>/<index_name> (that is, no need to specify the S3 physical path anymore).

Start by importing the necessary libraries, loading the appropriate token and username, logging in, setting up the URIs and cleaning up any previously created index with the same name.

# Import necessary libraries
import os

import numpy as np
import tiledb
import tiledb.cloud
import tiledb.vector_search as vs

# You should set the appropriate environment variables with
# your TileDB Cloud token and username.
token = os.environ["TILEDB_REST_TOKEN"]
username = os.environ["TILEDB_REST_USERNAME"]

# Get the bucket from an environment variable
s3_bucket = os.environ["S3_BUCKET"]

# Login to TileDB Cloud
tiledb.cloud.login(token=token)

# Set index URI
index_name = "running_locally"
index_uri = "tiledb://" + username + "/" + index_name
index_reg_uri = "tiledb://" + username + "/" + s3_bucket + "/" + index_name

# The TileDB Cloud context
ctx = tiledb.cloud.Ctx()

# Clean up index if it already exists
if tiledb.object_type(index_uri, ctx=ctx) == "group":
    tiledb.cloud.asset.delete(index_uri, recursive=True)

Create the index, using the URI that incorporates the S3 physical path as explained above:

# Create an index, where the dimensionality of each vector is 3,
# the type of the vector values is float32, and the index will
# use 3 partitions.
index = vs.ivf_flat_index.create(
    ctx=ctx,
    uri=index_reg_uri,
    dimensions=3,
    partitions=3,
    vector_type=np.dtype(np.float32),
)

Ingest some vectors.

# Apply a set of appends to the index, adding one vector at a time
update_vectors = np.empty([5], dtype=object)
update_vectors[0] = np.array([0, 0, 0], dtype=np.dtype(np.float32))
update_vectors[1] = np.array([1, 1, 1], dtype=np.dtype(np.float32))
update_vectors[2] = np.array([2, 2, 2], dtype=np.dtype(np.float32))
update_vectors[3] = np.array([3, 3, 3], dtype=np.dtype(np.float32))
update_vectors[4] = np.array([4, 4, 4], dtype=np.dtype(np.float32))
index.update_batch(vectors=update_vectors, external_ids=np.array([0, 1, 2, 3, 4]))

Submit a query.

# Create a query
query_vector = np.array([[2, 2, 2]], dtype=np.float32)

# Perform the query
result_d, result_i = index.query(query_vector, k=3, nprobe=3)
print("Result vector ids:\n")
print(result_i)
print("\nResult vector distances:\n")
print(result_d)
Result vector ids:

[[2 3 1]]

Result vector distances:

[[0. 3. 3.]]

Clean up.

# Clean up
if tiledb.object_type(index_uri, ctx=ctx) == "group":
    tiledb.cloud.asset.delete(index_uri, recursive=True)
Basic S3 Example
Advanced